Googology Wiki
Googology Wiki
No edit summary
Tag: Visual edit
Tag: Visual edit

Revision as of 17:00, 2 April 2021

(WORK IN PROGRESS)

See:

Part I

Part II: Arrows to Alphas

Part III: Full Circle

Original Part IV, a stupid attempt at an extension that will be ignored for this purpose

Let's get down to business. In the original Part IV, I defined <A,A> as an operator and allowed for operations on <A,A>. That sucked. I have a better idea.

A1 = A

<a,b>★An = <a,a>★<An-1,An-1>b (exponent denotes concatenation, NOT an operator)

An will still evaluate to <An-1,An-1>b if placed after any number of up-arrows.

Definition may change.

Recursive progression

<a,b>A2 ≈ ψ(Ωω)

<a,b>A2A ≈ ψ(Ωω)+1

<a,b>A2A2 ≈ ψ(Ωω)2

<a,b>A2A ≈ ψ(Ωω)×ω

<a,b>A2A↑↑A ≈ ψ(Ωω)×ε0

<a,b>A2A2 ≈ ψ(Ωω)2

<a,b>A2A2A ≈ ψ(Ωω)ω

<a,b>A2A2A↑↑A ≈ ψ(Ωω)ε0

<a,b>A2↑↑3 ≈ ψ(Ωω)↑↑2

<a,b>A2↑↑n ≈ ψ(Ωω)↑↑(n-1)

<a,b>A2↑↑A ≈ ψ(Ωω+Ω)

<a,b>A2↑↑A↑↑A ≈ ψ(Ωω+Ω2)

<a,b>A2↑↑A↑↑↑A ≈ ψ(Ωω2)

<a,b>A2↑↑A↑↑↑↑A ≈ ψ(Ωω3)

<a,b>A2↑↑A ↑A A ≈ ψ(Ωωω)

<a,b>A2↑↑<A,A>AAA ≈ ψ(ΩωΩ)

<a,b>A2↑↑<A,A>A↑↑A ≈ ψ(Ωω2)

<a,b>A2↑↑<A,A><A,A>AAA ≈ ψ(Ωω3)

<a,b>A2↑↑A2 ≈ ψ(Ωω×2)

<a,b>(A2↑↑A2)↑↑A ≈ ψ(Ωω×2+1)

<a,b>(A2↑↑A2)↑↑A↑↑A ≈ ψ(Ωω×2+Ω)

<a,b>(A2↑↑A2)↑↑A2 = A2↑↑A2A ≈ ψ(Ωω×3)

<a,b>A2↑↑A2AA ≈ ψ(Ωω×ω)

<a,b>A2↑↑A2(A↑↑A) ≈ ψ(Ωω×Ω)

<a,b>A2↑↑A2A2 ≈ ψ(Ωω2)

<a,b>A2↑↑A2A ≈ ψ(Ωωω)

<a,b>A2↑↑A2A↑↑A ≈ ψ(ΩωΩ)

<a,b>A2↑↑A2A2 ≈ ψ(ΩωΩω)

<a,b>A2↑↑A2↑↑A ≈ ψ(Ωω+1)

<a,b>A2↑↑A2↑↑AA ≈ ψ(Ωω2)

<a,b>A2↑↑A2↑↑A↑↑A ≈ ψ(ΩΩ)

<a,b>A2↑↑A2↑↑A↑↑↑A ≈ ψ(ΩΩ2)

<a,b>A2↑↑A2↑↑<A,A>AAA ≈ ψ(ΩΩ2)

<a,b>A2↑↑A2↑↑A2 ≈ ψ(ΩΩω)

<a,b>A2↑↑A2↑↑A2↑↑A ≈ ψ(ΩΩω+1)

<a,b>A2↑↑A2↑↑A2↑↑A2 ≈ ψ(ΩΩΩω)

<a,b>A2↑↑↑A ≈ ψ(OFP)

I don't know how to express ordinals beyond ψ(OFP) using an efficient notation. Until then I will use capital epsilon (E) to denote the αth omega fixed point as Eα, and continue using the Veblen hierarchy but with capital Greek letters. This is most likely ill-defined and should be left up to interpretation.

<a,b>A2↑↑↑A ≈ ψ(E0)

<a,b>(A2↑↑↑A)↑↑A2 ≈ ψ(ΩE0)

<a,b>A2↑↑↑AA ≈ ψ(E1)

<a,b>A2↑↑↑AA ≈ ψ(ψI(Eω)

<a,b>A2↑↑↑A↑↑A ≈ ψ(Eε0)

<a,b>A2↑↑↑A↑↑↑A ≈ ψ(Eζ0)

<a,b>A2↑↑↑A ↑A A ≈ ψ(Eφ(ω,0))

<a,b>A2↑↑↑<A,A>AAA ≈ ψ(Eψ(Ω2))

<a,b>A2↑↑↑A2 ≈ ψ(Eψ(Ωω))

<a,b>A2↑↑↑A2A ≈ ψ(Eψ(Ωω)+1)

<a,b>A2↑↑↑A2↑↑↑A ≈ ψ(Eψ(E0))

<a,b>A2↑↑↑↑A ≈ ψ(EΩ), the first fixed point of α ↦ ψ(Eα)

<a,b>(A2↑↑↑↑A)↑↑↑A2 ≈ ψ(EΩ+1)

<a,b>A2↑↑↑↑AA ≈ ψ(EΩ+ω)

<a,b>A2↑↑↑↑A↑↑A ≈ ψ(EΩ+ε0)

<a,b>A2↑↑↑↑A2 ≈ ψ(EΩ+ψ(E0))

<a,b>A2↑↑↑↑A2AA ≈ ψ(EΩ2)

<a,b>A2↑↑↑↑A2A2 ≈ ψ(EΩ×ψ(E0))

<a,b>A2↑↑↑↑A2A ≈ ψ(EΩ2)

<a,b>A2↑↑↑↑A2↑↑↑A ≈ ψ(EE0)

<a,b>A2↑↑↑↑A2↑↑↑↑A ≈ ψ(EEΩ)

<a,b>A2↑↑↑↑↑A ≈ ψ(Z0)

<a,b>A2↑↑↑↑↑AA ≈ ψ(Z1)

<a,b>A2↑↑↑↑↑A2 ≈ ψ(Zψ(Ωω))

<a,b>A2↑↑↑↑↑A2AA ≈ ψ(ZΩ)

<a,b>A2↑↑↑↑↑A2↑↑↑A ≈ ψ(ZE0)

<a,b>A2↑↑↑↑↑A2↑↑↑↑↑A ≈ ψ(ZZ0)

<a,b>A2↑↑↑↑↑↑A ≈ ψ(H0)

<a,b>A2↑↑↑↑↑↑A2 ≈ ψ(Hψ(Ωω))

<a,b>A2↑↑↑↑↑↑↑A ≈ ψ(Φ(4,0))

<a,b>A2A A ≈ ψ(Φ(ω,0))

<a,b>A2A ↑A A A ≈ ψ(Φ(φ(ω,0),0))

<a,b>A2A2 A ≈ ψ(Φ(ψ(Ωω),0))

<a,b>A2A2A A A ≈ ψ(Φ(ψ(Φ(ω,0)),0))

As you can see, A2 is a very powerful extension by itself. But A3 diagonalizes over it just the same.

<a,b>A3 ≈ ψ(Φ(Ω,0)), the first fixed point of α ↦ ψ(Φ(α,0)).

WIP article