FANDOM


Line 2,188: Line 2,188:
 
#trooga(trooga(...(trooga(X))...) (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000^^^^1,234,567,890 trooga thingies)
 
#trooga(trooga(...(trooga(X))...) (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000^^^^1,234,567,890 trooga thingies)
 
#Repeat all previous steps X times
 
#Repeat all previous steps X times
  +
#Repeat all previous steps X times
  +
#Keep going, with X total instances of "repeat all previous steps X times".
  +
#Keep going, with X total instances of "repeat all previous steps X times".
  +
#Keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times""
  +
#Keep going, with X total instances of "keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times"""
  +
#This will continue for X times.
  +
#\(f_{\text{Limit of TON}}(X)\)
 
</div>
 
</div>
   

Revision as of 09:04, March 27, 2020

Croutonillion is a groundbreakingly pointless googologism, consisting of a ridiculous sequence of totally arbitrary steps. It is constantly under construction, so please edit this page and add to it!

Croutonillion is the mother of all salad numbers — a gross parody of many new googologists' attempts to create large numbers, following the misguided philosophy that "if it's more complicated, it's bigger."

Definition

"N" refers to the previous step number and "O(n)" refers to the output of step n <= N. "X" refers to the result of the previous operation. Start with googoltriplex.

  1. X^^^...^^^X (X copies of ^)
  2. BB(X)
  3. megafuga(booga(X))
  4. X-xennaplex
  5. {X, X / 2}
  6. (Rayo's number)X
  7. BB(X) (repeat this step Y times, where Y is the value of Clarkkkkson on January 1, googolgong CE)
  8. \(f_{\Gamma_0}(X)\)
  9. giggol-X-plex
  10. X!!!...!!! (nested factorials, meameamealokkapoowa oompa times)
  11. gongulus-(2X + 1)-plex
  12. TREE(TREE(TREE(...TREE(X)...))) (X nested functions)
  13. ceil(Xpi)
  14. {X, X | 2}
  15. Ξ(X). Do this step Y times, where Y is computed with the following steps:
    1. Set Y = 3.
    2. Y{Y}(Y + 2)
    3. falpha(Y) in FGH, where alpha is Goucher's ordinal
    4. T(Y) (Torian)
    5. Circle(Y) (Steinhaus-Moser notation). Do this googol times.
  16. E10#^^#X (with X copies of #)
    Let f(x) be the result when going through all the steps up and excluding 16-th. Go in reverse order, and start with X.
  17. f(TREE(X))th apocalyptic number
  18. fgoober bunch(x)
  19. X@X@X@X@X@X@X (legiattic array of)
  20. X^^^^^X
  21. X^^^^^^X
  22. X^^^^^^^X
  23. X^^^^^^^^X
  24. f(x)^^^...^^^f(x) (f(x) copies of ^)
  25. SCG(TREE(SCG(TREE(SCG(f(x) + tritri) + supertet) + superpent) + superhex) + supersept) + Moser
  26. Exploding Tree Function(X)
  27. Rayo13(X)
    Create an alternate version of Croutonillion by stopping here (do the 103X + 3). Call this alternate C.
  28. ΣX(C)
  29. X^^^^^^^^^^^^^X
  30. XvvvvvvvvvvvvvX (down arrows)
  31. X -> X -> X -> X -> X (chained arrows)
  32. {X, X (1) 2}
  33. X$ (Pickover's superfactorial)
  34. gag-X
  35. Xsuper gongulus
  36. {X & L}10,10
  37. X!
  38. H(H(...(X)...)) (X nested functions), repeat grangoldex times.
  39. Same as step 15.
  40. {10,100 //...// 2} (X /'s)
  41. Repeat 1428571337 times for step 1 to step 40.
  42. X{meameamealokkapoowa oompa}(101337)
  43. {googolduplex,X,X}
  44. greagol-X-threx, then gigangol-X-tetrex, then gorgegol-X-pentex, and so on googol times
  45. E100#100...100#100#(X+1) (googol 100's)
  46. X-illion
  47. X&&...&&X (X &'s)
  48. E100#^#X
  49. googolduplexgoogolduplexX
  50. YX, where Y is lynz at May 1 meameamealokkapoowa-arrowa A.D.
  51. terrible tethrathoth-ex-terrible tethrathoth-...-ex-terrible tethrathoth (X terrible tethrathoth's)
  52. Rayo(Rayo(X) + 3)
  53. Ackermann(X, X)
  54. BH(X) starting with a size-X chain of \(\Gamma_0\)s
  55. Circle(Circle(X)) (Friedman's circle theorem, not SMN)
  56. Length of the Goodstein sequence starting with X
  57. X-illion-illion-illion-...-illion-illion-illion, faxul times
  58. BOX_M~XX
  59. X(Xth digit of pi + 1)
  60. Arx(X,X,X,...,X,X,X) (with X X's)
  61. \(f_{X}(X)\), repeat X times
  62. G(X)
  63. E(Y)Y#^^...^^#^#Y (X ^'s), where Y is googolplex.
  64. Repeat X times for step 1 to step 63.
  65. Repeat X times for step 1 to step 64.
  66. Repeat X times for step 1 to step 65.
  67. Repeat X times for step 1 to step 66.
  68. Repeat X times for step 1 to step 67.
  69. Repeat X times for step 1 to step 68.
  70. Repeat X times for step 1 to step 69.
  71. Repeat X times for step 1 to step 70.
  72. 10^^X
  73. X^^10
  74. X^^X
  75. {L & L & L...L & L & L,X}X,X (X L's)
  76. 75*75...75*75*X (X 75's)
  77. Graham's Number*X*Y, where Y is Step 5.
  78. Rayo(X)
  79. SCG(SCG(SCG(SCG(X)+googol)+googolplex)+googolduplex)
  80. TREE(TREE(TREE(TREE(X)+googol)+googolplex)+googolduplex)
  81. Rayo(Rayo(Rayo(Rayo(X)+googol)+googolplex)+googolduplex)
  82. Ξ(Ξ(Ξ(Ξ(X)+googol)+googolplex)+googolduplex)
  83. Arx(Arx(Arx(Arx(X)+googol)+googolplex)+googolduplex)
  84. BH(X) expect for hydra using TFB labels instead of omegas
  85. Repeat steps 1-84 until number of repetitions gets OVER 9000 (i.e. 9001 times)
  86. Repeat X times for step 85.
  87. Repeat X times for step 86.
  88. Repeat X times for step 87.
  89. Repeat X times for step 88.
  90. {X,X (X) X,X}
  91. {X,X,X} & X
  92. \(1000^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}\)
  93. E100#^#^#X
  94. E100#^^#^#X
  95. E100#^^^#^#X
  96. E100#^^^^^^^^^^^^^^^^#^#X + X
  97. E100#^^^^^#^#X
  98. E100#^^^^^^#^#X
  99. E100#^^^^^^^#^#X
  100. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  101. Arx(X,X,X,X)
  102. Arx(X,X,X,X,X)
  103. 1337133713371337...1337133713371337 (X 1337's)
  104. X+1
  105. X&&&...&&&X, with X copies of &
  106. H(X), Chris Bird's H function
  107. H(X), hyperfactorial
  108. m1(X), fusible margin function
  109. SCGX(X)
  110. X -> X -> X -> X -> X
  111. cg(X), Conway & Guy's function
  112. C(X), Hurford's C function
  113. Xi(X)
  114. X!!!!! (nested factorial, not multi) or ((((X!)!)!)!)!
  115. First Mersenne prime after X, if it exists. Otherwise it is the first number with abundance X.
  116. X^^5
  117. {10, 100, 1, 3, 3, 7, X}
  118. {10, 100 (1337) X}
  119. TREEX(X) (repeat this step humongulus times)
  120. Rayo(X) (repeat this step humongulus + 1 times)
  121. A(X, X) (Ackermann function; repeat this step humongulus + 2 times)
  122. X^^^X (repeat this step humongulus + 3 times)
  123. giggol-X-plex
    Create an alternate version of Croutonillion by stopping here. Call this number C2.
  124. SCG(SCG(C2 + X) + X) + XC2
  125. C*C2*X
  126. X!X, Nested Factorial Notation.
  127. X^^^C
  128. {X,1337,100}
  129. {9001,9001,C,X}
  130. GX
  131. Graham's Number^^^...^^^X (C ^'s)
  132. goo-X-ol
  133. X-oogol
  134. X^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  135. 103(X+1), repeat 1000000 times.
  136. 2(First prime after log2(X))
  137. X-ty-Xs (10X copies of X concatenated)
  138. X$ (superfactorial, repeat 50 times)
  139. Rayo(X)
  140. X![X([X([X])X])X] in hyperfactorial array notation
  141. {X&L,X}X,X Repeat this for meameamealokkapoowa oompa times. (Note: all Xs are Xs from croutonillion)
  142. Repeat step 1 then step 1,2 then step 1,2,3.... then... step 1,2,...,141 for meameamealokkapoowa oompa-brecewah times.
  143. X$$$...$$$ where there are X$$...$$ $'s  where there are X$$...$$ $'s where there are X$$...$$ $'s ... X$$...$$ (with X $'s), where there are X$$...$$ layers. All of this is Nested! Yes, is 2 (w/) just now.
  144. X{X{X$$$...$$$}X}X, with X $'s.
  145. GGX NESTED GRAHAM!!! Looks like G expanded to 3.
  146. Repeat step 1 to 145 for X times. Then do that X times. Then do that X times. Then do that X times. ... Then do that X times. Then do that X times. with X 'Then do that X times'. And, X is changing every step!
  147. The number of steps in gijswijt's sequence needed to reach X.
  148. Amount of terms in the harmonic series needed to reach X.
  149. Define the whole process up to here as the function C(n). Then, define the fast-growing-crouton as follows:
    • \(C_0(n) = C(n)\)
    • \(C_{\alpha+1}(n) = C^n_\alpha(C^n(n))\), where \(C^n\) denotes function iteration
    • \(C_\alpha(n) = C_{\alpha[n]}(n)\) iff \(\alpha\) is a limit ordinal
    • fundamental sequences are as normal
    • The value to carry on in the definition is \(C_{ψ_0(Ω_ω)}(X)\)
  150. X in a X-gon using Steinhaus-Moser notation
  151. Repeat step the last step. X times.
  152. G(G(...(X)...)) (G(G(...(X)...)) (...G(G(...(X)...)) (X G's)... G's) G's), X layers.
  153. AX, let A0 = X and An = X!(A(n-1)).
  154. Age of Jonathan Bowers in the year X^3 C.E. in Planck times.
  155. X&&&&&X
  156. return value of D(D(D(D(D(X))))) in loader.c
  157. S(X), Chris Bird's S function.
  158. S(S(...(3)...)), X S's
  159. X+401
  160. X$[U(X)] using dollar function and U function
  161. FGH(6,[X2])
  162. Repeat step 1 then step 1,2 then step 1,2,3.... then... step 1,2,...,161 for X times.
  163. \((X^100)^{100^X})^{100^{X^X}}\)
  164. \(\lfloor(10 \uparrow e) \uparrow\uparrow X\rfloor\)
  165. \(X \uparrow_{,_{(\uparrow\uparrow)\uparrow}\uparrow} X\), using this.
  166. \(X\$[[X],_{X,\text{S}(X),\text{SCG}(X+\text{KAI U~})}]\)
  167. \(\sum^{X}_{i=1}\Sigma(i)\)
  168. X^4562645464355123322146346142342456
  169. \(\sum^{X}_{j=1}\sum^{j}_{i=1}\Sigma(i)\)
  170. Repeat the steps 1 to 169 Rayo(X) times.
  171. X![[<1(X)2>1]]
  172. 10*1010, let create a function:
    1. n*1m = n+m
    2. n*lm = Xm
    3. X1 = X
    4. XY+1 = n*l-1n...n*l-1n (XY n's)
  173. Gen(X, X, X, ..., X) with X X's using this
  174. X^X
  175. X^^X
  176. X^^^X
  177. X^^^^^^^^^^^^^^^^^^^X
  178. X{X}X
  179. X{{...{{X}}...}}X with X pairs of curly braces
  180. X+1647265547748373872928297383749739473947498598696869983298287329838631983917319821972197281729712891279182972917
  181. X*2762762746863717391681379173817391781739173917391791839183971308391830813918301837919389183981983719391739189779
  182. {X,X[X/2]X} using BAN
  183. \(X^{X+1}\)
  184. \(f_{\varepsilon_X+1}(X)\)
  185. \(Rayo^{Rayo(X)}(Rayo(X))\)
  186. Repeat step 1, then step 1 and 2, then step 1,2 and 3 until 1,2,3,....,183,184,185 for \(\Xi^{\Xi(X)}(\Sigma_X(X))^{\text{Fish number 7}}\$[[0]_2]\)bracewah times
  187. \(F_6^{63}(X)\) (see Fish number 6)
  188. X![X]![X]![X]!........[X]![X]![X] with X![X] quantity of [X]!
  189. \(\Xi^{\Xi(X)}(\Sigma_{X-5}(X))^{\text{Fish number 4}}\$[[25134252432]_X]\)bracewah
  190. XCC2
    Create an alternate version of Croutonillion by stopping here. Call this number C3.
  191. C3![C2![C![X]]]
  192. Repeat step 191 X^^2 times
  193. Repeat step 192 X^^3 times
  194. Repeat step 193 X^^4 times
  195. Repeat step 194 X^^5 times
  196. Repeat step 195 X^^6 times
  197. Repeat step 196 X^^7 times
  198. Repeat step 197 X^^8 times
  199. Repeat step 198 X^^9 times
  200. Repeat step 199 X^^10 times
  201. X![1,2,3,4...........X-2,X-1,X]
  202. X$ into X$-gons
  203. repeat step 1 to 202 for Xgrand Sprach Zarathustra times
  204. XX&X using BEAF
  205. \(X\rightarrow X\rightarrow X\rightarrow X\)
  206. \(E[X]X\#\#X\)
  207. \(E[X]X\#\uparrow^X\#X\)
  208. \(E[X]X\#\uparrow^{\#\uparrow^{\#}\#}\#X\)
  209. \(X \rightarrow X \rightarrow X \rightarrow X \rightarrow X\) using Conway's chained arrow in hypermathmatics
  210. \(X\) inside a \(2X\)-sided polygon
  211. \(\Sigma(X)\)
  212. \(Rayo^X(X)\)
  213. \(X+1\)
  214. \(X\times2\)
  215. \(X\uparrow X\)
  216. \(X\uparrow^{X}X\)
  217. \(X\rightarrow X = X \uparrow_{1}\uparrow X\) using this
  218. \(\{X, X[1\backslash1\backslash2]X\}\)
  219. Repeat steps 1 to 218
  220. Repeat steps 1 to 219
  221. Repeat steps 1 to 220
  222. Repeat steps 1 to 221
    Create an alternate version of Croutonillion by stopping here. Call this number C4.
  223. \(C4\uparrow^{C3\uparrow^{C2\uparrow^{C}C2}C3}C4\)
  224. \(C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4\)
  225. Aarexhydra(x)
  226. X + C4
  227. X + C3
  228. X + C2
  229. X + C
  230. 10879813718738138739183827393782839273923391838173018382739284837408482740294827402849284028492849284928492849749^X
  231. X{34}
  232. \(f_\omega(X)\)
  233. \(f_{\Gamma_0}(X)\)
  234. \(f_{\theta(\Omega^\omega)}(X)\)
  235. \(f_{\theta(\Omega^\Omega)}(X)\)
  236. \(f_{\theta(\varepsilon_{\Omega+1})}(X)\)
  237. \(f_{\theta(\theta_1(\omega))}(X)\)
  238. \(f_{\theta(\theta_1(\Omega))}(X)\)
  239. \(f_{\theta(\theta_1(\Omega_2))}(X)\)
  240. \(f_{\theta(\theta_I(0))}(X)\)
  241. \(f_{\theta(\theta_M(0))}(X)\)
  242. \(f_{\theta(\theta_K(0))}(X)\)
    Create an alternate version of Croutonillion by stopping here. Call this number C5.
  243. \(\text{Grand Sprach Zarathustra}^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}\)
  244. BB(X)
  245. X-xennaplex
  246. (Rayo's number)^X
  247. Repeat all steps 1-246 for X![X] times
    Create an alternate version of Croutonillion by stopping here. Call this number C6.
  248. X + C6
  249. X + C5
  250. X + C4
  251. X + C3
  252. X + C2
  253. X + C
  254. 1983875725766252877538279838723882837298328732983928392839229173918391739188173018387134829874082374@2387408137409^X
  255. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  256. \(f_\omega(X)\)
  257. \(f_{\Gamma_0}(X)\)
  258. \(f_{\theta(\Omega^\omega)}(X)\)
  259. \(f_{\theta(\Omega^\Omega)}(X)\)
  260. \(f_{\theta(\varepsilon_{\Omega+1})}(X)\)
  261. \(f_{\theta(\theta_1(\omega))}(X)\)
  262. \(f_{\theta(\theta_1(\Omega))}(X)\)
  263. \(f_{\theta(\theta_1(\Omega_2))}(X)\)
  264. \(f_{\theta(\theta_I(0))}(X)\)
  265. \(f_{\theta(\theta_M(0))}(X)\)
  266. \(f_{\theta(\theta_K(0))}(X)\)
  267. repeat step 1, step1-2, step 1-2-3,........, step 1-2-3-......266 for \([(X\$)!(X\$)]![(X\$)!(X\$)]\$\) times.
  268. Go into reverse order until step 1 (the first step of the entire list) then repeat this process (step 1 to 267, go reverse from step 267 to step 1) \([(X\$)!(X\$)]![(X\$)!(X\$)]\$\) times.
  269. \(X\text{%}\), Warp Notation
  270. \(X\text{%}\text{%}\)
  271. \(X\text{%}_2\)
  272. \(X\text{%}_{\text{%}}\)
  273. \(X(1)\)
  274. \(X(1)_{(1)}\)
  275. \(X(2)\)
  276. \(X((1))\)
  277. \(X(0_1)\)
  278. \(X(0_{0_1})\)
  279. \(X(0 \rightarrow 1)\)
  280. \(X(0 \rightarrow_2 1)\)
  281. \(X(0 \rightarrow_{0_1} 1)\)
  282. \(X(0 \rightarrow_{0 \rightarrow 1} 1)\)
  283. \(X(0 (1)\rightarrow 1)\)
  284. \(X(0 (0 \rightarrow 1)\rightarrow 1)\)
  285. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  286. \(R_0(X)\)
    1. \(R_0(X)=Rayo(X)\)
    2. \(R_{\alpha+1}(X)=R_\alpha^X(X)\)
    3. \(R_\alpha(X)=R_{\alpha[X]}(X)\) if \(\alpha\) is a limit ordinal
  287. \(R_\omega(X)\)
  288. \(R_{\varepsilon_0}(X)\)
  289. \(R_{\Gamma_0}(X)\)
  290. \(R_{\theta(\theta_I(0))}(X)\)
  291. \(R_{\theta(\theta_M(0))}(X)\)
  292. \(R_{\theta(\theta_K(0))}(X)\)
  293. Repeat steps 1 to 292 {C, C2, [C3] C4, C4 [C5[C5]C5] C6, C6, C6} times (using BAN)
  294. \(f_{C(\Omega^X)}(10^{100})\)
  295. Repeat step 294 {X,X[C[C2[C3[X]C4]C5]C6]2} times (using Aarex's Array Notation)
  296. Repeat same step above X^X times.
  297. Repeat same step above X^^X times.
  298. Repeat same step above X^^^^X times.
  299. Repeat same step above X^^^^^^^^X times.
  300. Repeat same step above X^^^^^^^^^^^^^^^^X times.
  301. Repeat same step above X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X times.
  302. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  303. {X, X, X, X, 1, 2, 6, 6, 5}
  304. X -> X -> X
  305. BBX(X)
  306. {X,X...X,X}/w {C,C...C,C}/w {C2,C2...C2,C2}/w {C3,C3...C3,C3}/w {C4,C4...C4,C4}/w {C5,C5...C5,C5}/w C6 entries entries entries entries entries # E100{#,#(1)2}X
  307. E100{#,#,1,1,2}X
  308. E100{#,#,1,#}X
  309. E100{#,#,1,3}X
  310. E100{#,#,#,2}X
  311. E100{#,{#,#,1,2},1,2}X
  312. E100{#,#+2,1,2}X
  313. E100#*(#*^#)#X
  314. E100#**^#X
  315. E100#*^#X
  316. E100&(&(#))X
  317. E100&(#)X
  318. E100&(1)X
  319. E100{#,#,1,2}X
  320. E100#^^^#X
  321. E100#^^#^^#X
  322. E100#^^##X
  323. E100#^^#>#^^#X
  324. E100#^^#>#X
  325. E100#^^#X
  326. E100#^#^#X
  327. E100#^##X
  328. E100#^#X
  329. E100##X
  330. E100#X
  331. 10^100-illion-illion-...-illion-illion/w X -illion's
  332. Sigma^^...^^X(X)/w X ^'s
    1. f^^X(X) = f^f...f^f(X)(X)...(X)(X)/w X nested
    2. f^^^X(X) = f^^f...f^^f(X)(X)...(X)(X)/w X nested
  333. Rayo^^...^^(X)/w X ^'s
  334. Repeat step 306 X times
  335. XAB, where A is the number of bits with value 1 on the wikitext source (in UTF-8) of revision 589365846 of the Wikipedia article "Crouton" and B is the number of cats in Mew-Genics
  336. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X!!!!!!!!!!!!!!!!!!!!!!!!!!!!111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
  337. X@X (BEAF)
  338. Rayo(Rayo(X))^^X
  339. X^2089787328737273867287387238274927492472983287492749284827429749284928492740284928492849284028492849284927492849
  340. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}10012345678909758492715364758699598473939893939
  341. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321746352829282765454738388272
  342. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890847635424242453546
  343. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321848764647
  344. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321234567890
  345. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567890
  346. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567899
  347. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}32123456789098765432123456789098765432123456789
  348. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}43212345678909876543211234567890987654432123345
  349. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^11234567890987654321234567890987654321234567890987654321234567890
  350. X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^x^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X
  351. BB(X)
  352. BB2(X)
  353. X-ex-grand godgahlahgong
  354. X-ex-horrendous godsgodgulus
  355. {X,X,X,X,X} & 123456789
  356. repeat step 1-355 for X![C,C2,C3,C4,C5,C6] times
  357. repeat step 1-356 for X![C,C3,C4,C5,C6,C2] times
  358. repeat step 1-357 for X![C,C4,C5,C6,C2,C3] times
  359. repeat step 1-358 for X![C,C5,C6,C2,C3,C4] times
  360. repeat step 1-359 for X![C,C6,C2,C3,C4,C5] times
  361. repeat step 1-360 for X![C2,C3,C4,C5,C6,C] times
  362. repeat step 1-361 for X![C2,C4,C5,C6,C,C3] times
  363. repeat step 1-362 for X![C2,C5,C6,C,C3,C4] times
  364. repeat step 1-363 for X![C2,C6,C,C3,C4,C5] times
  365. repeat step 1-364 for X![C2,C,C3,C4,C5,C6] times
  366. repeat step 1-365 for X![C3,C4,C5,C6,C,C2] times
  367. repeat step 1-366 for X![C3,C5,C6,C,C2,C4] times
  368. repeat step 1-367 for X![C3,C6,C,C2,C4,C5] times
  369. repeat step 1-368 for X![C3,C,C2,C4,C5,C6] times
  370. repeat step 1-369 for X![C3,C2,C4,C5,C6,C] times
  371. repeat step 1-370 for X![C4,C5,C6,C,C2,C3] times
  372. repeat step 1-371 for X![C4,C6,C,C2,C3,C5] times
  373. repeat step 1-372 for X![C4,C,C2,C3,C5,C6] times
  374. repeat step 1-373 for X![C4,C2,C3,C5,C6,C] times
  375. repeat step 1-374 for X![C4,C3,C5,C6,C,C2] times
  376. repeat step 1-375 for X![C5,C6,C,C2,C3,C4] times
  377. repeat step 1-376 for X![C5,C,C2,C3,C4,C6] times
  378. repeat step 1-377 for X![C5,C2,C3,C4,C6,C] times
  379. repeat step 1-378 for X![C5,C3,C4,C6,C,C2] times
  380. repeat step 1-379 for X![C5,C4,C6,C,C2,C3] times
  381. repeat step 1-380 for X![C6,C,C2,C3,C4,C5] times
  382. repeat step 1-381 for X![C6,C2,C3,C4,C5,C] times
  383. repeat step 1-382 for X![C6,C3,C4,C5,C,C2] times
  384. repeat step 1-383 for X![C6,C4,C5,C,C2,C3] times
  385. repeat step 1-384 for X![C6,C5,C,C2,C3,C4] times
    Create an alternate version of Croutonillion by stopping here. Call this number C7.
  386. C7{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7
  387. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C7]}X
  388. X^C7^C6^C5^C4^C3^C2^C
  389. ((((((((((((X$)$)$)$)$.........$)$)$) with X$ copies of $
  390. X^^X^^^^^^^^^^^^^^^^^^^^^^^^^^X
  391. X^138247384917534214561579428652481278542422422401650237490245107250015481802424042051424340805022642408080461051604040609887376465363737378378388318923787329472983297391379138913891739183917301839182918391839810189189380830189812981309
  392. X&&&&&&.......&&&&&&&&&X with {(3)3[ω^(1+1)+ω^(1+1)+ω^(1)+ω^(1)+1+1]} copy of &
  393. repeat step 1-368 then go reverse from step 368-1 ,repeat X*E100{#&#&#&#&#&#&#&#&#&#& ... &#&#&#&#&#&#&#&#&#&#}100w/grand Sprach Zarathustra #s
  394. Repeat step 393
  395. Repeat step 393 then 394
  396. Repeat step 393, 394, then 395
  397. X-th item of Gugold series
  398. X-th item of Throogol series
  399. X-th item of Godgahlah series
  400. X-th item of Tethrathoth series
  401. Repeat step 1-400 X times.
  402. X + C
  403. X + C2
  404. X + C3
  405. X + C4
  406. X + C5
  407. X + C6
  408. X + C7
  409. X + (C+C2)
  410. X + (C+C3)
  411. X + (C+C4)
  412. X + (C+C5)
  413. X + (C+C6)
  414. X + (C+C7)
  415. X + (C+C2+C3)
  416. X + (C+C2+C4)
  417. X + (C+C2+C5)
  418. X + (C+C2+C6)
  419. X + (C+C2+C7)
  420. X + (C+C2+C3+C4)
  421. X + (C+C2+C3+C5)
  422. X + (C+C2+C3+C6)
  423. X + (C+C2+C3+C7)
  424. X + (C+C2+C3+C4+C5)
  425. X + (C+C2+C3+C4+C6)
  426. X + (C+C2+C3+C4+C7)
  427. X + (C+C2+C3+C4+C5+C6)
  428. X + (C+C2+C3+C4+C5+C7)
  429. X + (C+C2+C3+C4+C5+C6+C7)
  430. X * C
  431. X * C2
  432. X * C3
  433. X * C4
  434. X * C5
  435. X * C6
  436. X * C7
  437. X * (C*C2)
  438. X * (C*C3)
  439. X * (C*C4)
  440. X * (C*C5)
  441. X * (C*C6)
  442. X * (C*C7)
  443. X * (C*C2*C3)
  444. X * (C*C2*C4)
  445. X * (C*C2*C5)
  446. X * (C*C2*C6)
  447. X * (C*C2*C7)
  448. X * (C*C2*C3*C4)
  449. X * (C*C2*C3*C5)
  450. X * (C*C2*C3*C6)
  451. X * (C*C2*C3*C7)
  452. X * (C*C2*C3*C4*C5)
  453. X * (C*C2*C3*C4*C6)
  454. X * (C*C2*C3*C4*C7)
  455. X * (C*C2*C3*C4*C5*C6)
  456. X * (C*C2*C3*C4*C5*C7)
  457. X * (C*C2*C3*C4*C5*C6*C7)
  458. X^C
  459. X^C2
  460. X^C3
  461. X^C4
  462. X^C5
  463. X^C6
  464. X^C7
  465. X^(C+C2)
  466. X^(C+C3)
  467. X^(C+C4)
  468. X^(C+C5)
  469. X^(C+C6)
  470. X^(C+C7)
  471. X^(C+C2+C3)
  472. X^(C+C2+C4)
  473. X^(C+C2+C5)
  474. X^(C+C2+C6)
  475. X^(C+C2+C7)
  476. X^(C+C2+C3+C4)
  477. X^(C+C2+C3+C5)
  478. X^(C+C2+C3+C6)
  479. X^(C+C2+C3+C7)
  480. X^(C+C2+C3+C4+C5)
  481. X^(C+C2+C3+C4+C6)
  482. X^(C+C2+C3+C4+C7)
  483. X^(C+C2+C3+C4+C5+C6)
  484. X^(C+C2+C3+C4+C5+C7)
  485. X^(C+C2+C3+C4+C5+C6+C7)
  486. X^(C*C)
  487. X^(C*C2)
  488. X^(C*C3)
  489. X^(C*C4)
  490. X^(C*C5)
  491. X^(C*C6)
  492. X^(C*C7)
  493. X^(C*C2*C3)
  494. X^(C*C2*C4)
  495. X^(C*C2*C5)
  496. X^(C*C2*C6)
  497. X^(C*C2*C7)
  498. X^(C*C2*C3*C4)
  499. X^(C*C2*C3*C5)
  500. X^(C*C2*C3*C6)
  501. X^(C*C2*C3*C7)
  502. X^(C*C2*C3*C4*C5)
  503. X^(C*C2*C3*C4*C6)
  504. X^(C*C2*C3*C4*C7)
  505. X^(C*C2*C3*C4*C5*C6)
  506. X^(C*C2*C3*C4*C5*C7)
  507. X^(C*C2*C3*C4*C5*C6*C7)
  508. X^(C^C)
  509. X^(C^C2)
  510. X^(C^C3)
  511. X^(C^C4)
  512. X^(C^C5)
  513. X^(C^C6)
  514. X^(C^C7)
  515. X^(C^C2^C3)
  516. X^(C^C2^C4)
  517. X^(C^C2^C5)
  518. X^(C^C2^C6)
  519. X^(C^C2^C7)
  520. X^(C^C2^C3^C4)
  521. X^(C^C2^C3^C5)
  522. X^(C^C2^C3^C6)
  523. X^(C^C2^C3^C7)
  524. X^(C^C2^C3^C4^C5)
  525. X^(C^C2^C3^C4^C6)
  526. X^(C^C2^C3^C4^C7)
  527. X^(C^C2^C3^C4^C5^C6)
  528. X^(C^C2^C3^C4^C5^C7)
  529. X^(C^C2^C3^C4^C5^C6^C7)
    Create an alternate version of Croutonillion by stopping here. Call this number C8.
  530. X![C,C2,C3,C4,C5,C6,C7,C8]
  531. repeat step 1 to 355 X^^^^^^^^^^(X Times ^)^^^^^^^^^^^^^X
  532. repeat step 356 to 531 X^^^^^^^^^^(X Times ^)^^^^^^^^^^^^^X
  533. repeat step 1 to 532, go reverse from 532 to 1, all for X^C8^C7^C6^C5^C4^C3^C2^C times
  534. repeat steps 100 to 200
  535. repeat steps 200 to 100
  536. Do the following steps in order: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, ... according to the ruler sequence, up to step 535.
  537. X&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&X
  538. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
  539. [(X&&&&&&&&&&X)^(X&&&&&&&&&X)]^[(Fish number 7)#\(\text{googolplex} \downarrow\downarrow \text{googolplex}\)]
  540. X-acthul-x-on (example: 7-acthul-9-on would be heptacthulennon)
  541. {X,X\\\\.....\\\\\X} with {X,X\\\\.....\\\\\X} with {X,X\\\\.....\\\\\X}...[continue X times]... with {X,X\\\\.....\\\\\X} with X^^^X \s
  542. E100#****.....*****^^^^^.....^^^^^###.......######100,000,000,000 with X *s, X ^s, and X #s
  543. X-icahlah
  544. X-ongulus
  545. X![XX]
  546. X-ee-x-ol
  547. X-th prime
  548. First odd composite number after X
  549. Repeat step 529 and 530 googolplex{{...{{googolplex}}...}}googolplex times (X {}'s)
  550. \(f_{X}(X)\)
    Create an alternate version of Croutonillion by stopping here. Call this number C9.
  551. C^C2^^C3^^^C4^^^^C5^^^^^C6^^^^^^C7^^^^^^^C8^^^^^^^^C9^^^^^^^^^X
  552. C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9l
  553. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9]
  554. Repeat step 1, 1-2, 1-2-3, 1-2-3-4,........, 1-2-3-......-552, 1-2-3......-553, then go in reverse order: step 553, 553-552, 553-552-551,......, 553-552-551-........-3-2-1 for X![X,X,X......(X copies of Xs).....X,X,X] times
  555. \(X^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}\)
  556. \(X\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C}C2}C3}C4}C5}C6}C7}C8}C9}X\)
  557. f^{f^^{f^^^{X}(X)}(X)}(X), where f(n) = n+1.
  558. X{X{X{X}X}X}X
  559. X^X^X^X^X^X^X
  560. X*X*X*X*X*X*X
  561. X+X+X+X+X+X+X
  562. E100#*{#,#,1,2}#X
  563.  X ↑X ↑...X ↑X ↑X X X... X X w/ the amount of Xs being X on each side
  564. (X^GRAND SPRACH ZARATHUSTRA)#***...***^^^...^^^###...###(X^GRAND SPRACH ZARATHUSTRA) with X *s, X ^s, and X #s
  565. (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)^E100%100#2)![(grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s),.....((grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s) times (grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)elements.....,(grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)]
  566. Repeat previous step X Times
  567. Repeat previous step X^X Times
  568. Repeat previous step X^X^X Times
  569. Repeat previous step X^X Times
  570. Repeat previous step X Times
  571. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}X
  572. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}X
  573. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}X
  574. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}X
  575. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}X
  576. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}X
  577. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}X
  578. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}X
  579. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}X
  580. repeat step 1-579 X Times
  581. repeat step 1-580 X Times
  582. repeat step 1-581 X Times
  583. repeat step 1-582 X Times
  584. repeat step 1-583 X Times
  585. repeat step 1-584 X Times
  586. repeat step 1-585 X Times
  587. repeat step 1-586 X Times
  588. repeat step 1-587 X Times
  589. repeat step 1-588 X Times
  590. repeat step 1-589 X Times
  591. repeat step 1-590 X Times
  592. \(\Xi^{\Xi(X)}(\Sigma_{X-1}(X))^{\text{Fish number 7}}\$[[9876543210123456789]_X]\)bracewah
  593. repeat step 1-592 then 592-1 for X%X#X
  594. X times e100{#,#(0,1)2}100 according to http://googology.wikia.com/wiki/User:Wythagoras/Extended_Cascading-E_Notation
    Create an alternate version of Croutonillion by stopping here. Call this number C10.
  595. 2048{X}C{X}C2{X}C3{X}C4{X}C5{X}C6{X}C7{X}C8{X}C9{X}
  596. C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X
  597. X-ex-terrible tethrathoth
  598. 5^17^257^65537^X
  599. X(0->0->11) on Warp Notation
  600. X(0[2]1)
  601. X(0(X+1)->{X+1})X = X(0(X)->{0(X)->{...0(X)->{0(X)->{1}(X+1)->{X}}{1}( X+1)->{X}...}{1}(X+1)->{X}}{1}(X+1)->{X})/w X nested
  602. {X(0(X+1)->{X+1})X}***...***^^^...^^^###...###\\\...\\\///...///{X(0(X+1)->{X+1})X} with {X(0(X+1)->{X+1})X} *'s and ^'s and #'s and \'s and /'s
  603. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 568-569
  604. {X(0->0->0->1X+1)X}{#&#&#&...{X(0->0->0->1X+1)X} Times #& ...&#&#&#&#}{X(0->0->0->1X+1)X}
  605. Repeat step 100, 200, 300, 400,500 and 600 X times
  606. X$[[0(0,0/0...0/11)1]]/w X 0's
  607. E100{#,#(1)2}X
  608. E100{#,#,1,1,2}X
  609. E100{#,#,1,#}X
  610. E100{#,#,1,3}X
  611. E100{#,#,#,2}X
  612. E100{#,{#,#,1,2},1,2}X
  613. E100{#,#+2,1,2}X
  614. E100#*(#*^#)#X
  615. E100#**^#X
  616. E100#*^#X
  617. E100&(&(#))X
  618. E100&(#)X
  619. E100&(1)Xp
  620. E100{#,#,1,2}X
  621. E100#^^^#X
  622. E100#^^#^^#X
  623. E100#^^##X
  624. E100#^^#>#^^#X
  625. E100#^^#>#X
  626. E100#^^#X
  627. E100#^#^#X
  628. E100#^##X
  629. E100#^#X
  630. E100##X
  631. E100#X
  632. EX
  633. X*27138617371381631973286329738239273827392739273891839813983928392839283028302830283082302930293029302930930909320!
    Create an alternate version of Croutonillion by stopping here. Call this number C11.
  634. X#783783772638237873927382739273927387329738273927392839273982398239273928392830283928392839283923928323928392839889
  635. X+Finaloogol
  636. X+C11
  637. E100#^{1337}X
  638. m1(X), normalized fusible margin function
  639. TREEX(X)
  640. EX###################################################################################X!
  641. X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%81389283028993928302839932989287/8273873287382738273928392839283928398813982983928392839839283928392839283928392839283982392839823982398239283982398398239823928398989898989998999898988989
  642. 2987654346374676438643868274286428732864286482748264827827382748724872487284728472874927429982482984X
  643. {X,C11 [1[1][1]...[1][2]2] 2}/w C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X nested
  644. EX {#,# [1[1][1]...[1][2]2] 2} C11/w C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X
  645. X^^^^^^^^^B1, where B1 is the binary data of this image interpreted as an integer (Big-endian with the most significant bit first): Extreme facepalm
  646. X^C1^B1^C2^C11
  647. X(1 -> 3 -> 3 ->1337 7)
  648. 203^431,112,937#^^^^########^^^^######>#^##(203^431,112,937#^^^^########^^^^######>#^#203,431,112,937#203,431,111,937)
  649. 427886755455754365436553765486779887989664221244668€9&980987989798878687979797989798989798979786799887665536646464^X
  650. 698376465757839939393948747484858588494849585958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  651. 420{420}X
  652. {666,X(1)2}
  653. {1337,1337(X,X)1337}
  654. {9001,X/2}
  655. {L(X),Graham's number}Graham's number, Graham's number
  656. 100(100[X]100)
  657. 10(100*X)
  658. E(10^X)X#^^#G64
  659. 10^^^^^X
  660. X^^^^^10
  661. X^^^^^X
  662. C11+C+X
  663. {X, B2, B2}, where B2 is the binary data of the raw wiki code of this page interpreted as an integer (MSB first)
  664. repeat step 1-663 for X![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11] times
  665. repeat step 1-664 for X![C,C3,C4,C5,C6,C7,C8,C9,C10,C11,C2] times
  666. repeat step 1-665 for X![C,C4,C5,C6,C7,C8,C9,C10,C11,C2,C3] times
  667. repeat step 1-666 for X![C,C5,C6,C7,C8,C9,C10,C11,C2,C3,C4] times
  668. repeat step 1-667 for X![C,C6,C7,C8,C9,C10,C11,C2,C3,C4,C5] times
  669. repeat step 1-668 for X![C,C7,C8,C9,C10,C11,C2,C3,C4,C5,C6] times
  670. repeat step 1-669 for X![C,C8,C9,C10,C11,C2,C3,C4,C5,C6,C7] times
  671. repeat step 1-670 for X![C,C9,C10,C11,C2,C3,C4,C5,C6,C7,C8] times
  672. repeat step 1-671 for X![C,C10,C11,C2,C3,C4,C5,C6,C7,C8,C9] times
  673. repeat step 1-672 for X![C,C11,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
  674. repeat step 1-673 for X![C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C] times
  675. repeat step 1-674 for X!]C2,C4,C5,C6,C7,C8,C9,C10,C11,C,C3] times
  676. repeat step 1-675 for X![C2,C5,C6,C7,C8,C9,C10,C11,C,C3,C4] times
  677. repeat step 1-676 for X![C2,C6,C7,C8,C9,C10,C11,C,C3,C4,C5] times
  678. repeat step 1-677 for X![C2,C7,C8,C9,C10,C11,C,C3,C4,C5,C6] times
  679. repeat step 1-678 for X![C2,C8,C9,C10,C11,C,C3,C4,C5,C6,C7] times
  680. repeat step 1-679 for X![C2,C9,C10,C11,C,C3,C4,C5,C6,C7,C8] times
  681. repeat step 1-680 for X![C2,C10,C11,C,C3,C4,C5,C6,C7,C8,C9] times
  682. repeat step 1-681 for X![C2,C11,C,C3,C4,C5,C6,C7,C8,C9,C10] times
  683. repeat step 1-682 for X![C3,C4,C5,C6,C7,C8,C9,C10,C11,C,C2] times
  684. repeat step 1-683 for X![C3,C5,C6,C7,C8,C9,C10,C11,C,C2,C4] times
  685. repeat step 1-684 for X![C3,C6,C7,C8,C9,C10,C11,C,C2,C4,C5] times
  686. repeat step 1-685 for X![C3,C7,C8,C9,C10,C11,C,C2,C4,C5,C6] times
  687. repeat step 1-686 for X![C3,C8,C9,C10,C11,C,C2,C4,C5,C6,C7] times
  688. repeat step 1-687 for X![C3,C9,C10,C11,C,C2,C4,C5,C6,C7,C8] times
  689. repeat step 1-688 for X![C3,C10,C11,C,C2,C4,C5,C6,C7,C8,C9] times
  690. repeat step 1-689 for X![C3,C11,C,C2,C4,C5,C6,C7,C8,C9,C10] times
  691. repeat step 1-690 for X![C4,C5,C6,C7,C8,C9,C10,C11,C,C2,C3] times
  692. repeat step 1-691 for X![C4,C6,C7,C8,C9,C10,C11,C,C2,C3,C5] times
  693. repeat step 1-692 for X![C4,C7,C8,C9,C10,C11,C,C2,C3,C5,C6] times
  694. repeat step 1-693 for X![C4,C8,C9,C10,C11,C,C2,C3,C5,C6,C7] times
  695. repeat step 1-694 for X![C4,C9,C10,C11,C,C2,C3,C5,C6,C7,C8] times
  696. repeat step 1-695 for X![C4,C10,C11,C,C2,C3,C5,C6,C7,C8,C9] times
  697. repeat step 1-696 for X![C4,C11,C,C2,C3,C5,C6,C7,C8,C9,C10] times
  698. repeat step 1-697 for X![C5,C6,C7,C8,C9,C10,C11,C,C2,C3,C4] times
  699. repeat step 1-698 for X![C5,C7,C8,C9,C10,C11,C,C2,C3,C4,C6] times
  700. repeat step 1-699 for X![C5,C8,C9,C10,C11,C,C2,C3,C4,C6,C7] times
  701. repeat step 1-700 for X![C5,C9,C10,C11,C,C2,C3,C4,C6,C7,C8] times
  702. repeat step 1-701 for X![C5,C10,C11,C,C2,C3,C4,C6,C7,C8,C9] times
  703. repeat step 1-702 for X![C5,C11,C,C2,C3,C4,C6,C7,C8,C9,C10] times
  704. repeat step 1-703 for X![C6,C7,C8,C9,C10,C11,C,C2,C3,C4,C5] times
  705. repeat step 1-704 for X![C6,C8,C9,C10,C11,C,C2,C3,C4,C5,C7] times
  706. repeat step 1-705 for X![C6,C9,C10,C11,C,C2,C3,C4,C5,C7,C8] times
  707. repeat step 1-706 for X![C6,C10,C11,C,C2,C3,C4,C5,C7,C8,C9] times
  708. repeat step 1-707 for X![C6,C11,C,C2,C3,C4,C5,C7,C8,C9,C10] times
  709. repeat step 1-708 for X![C7,C8,C9,C10,C11,C,C2,C3,C4,C5,C6] times
  710. repeat step 1-709 for X![C7,C9,C10,C11,C,C2,C3,C4,C5,C6,C8] times
  711. repeat step 1-710 for X![C7,C10,C11,C,C2,C3,C4,C5,C6,C8,C9] times
  712. repeat step 1-711 for X![C7,C11,C,C2,C3,C4,C5,C6,C8,C9,C10] times
  713. repeat step 1-712 for X![C8,C9,C10,C11,C,C2,C3,C4,C5,C6,C7] times
  714. repeat step 1-713 for X![C8,C10,C11,C,C2,C3,C4,C5,C6,C7,C9] times
  715. repeat step 1-714 for X![C8,C11,C,C2,C3,C4,C5,C6,C7,C9,C10] times
  716. repeat step 1-715 for X![C9,C10,C11,C,C2,C3,C4,C5,C6,C7,C8] times
  717. repeat step 1-716 for X![C9,C11,C,C2,C3,C4,C5,C6,C7,C8,C10] times
  718. repeat step 1-717 for X![C10,C11,C,C2,C3,C4,C5,C6,C7,C8,C9] times
  719. repeat step 1-718 for X![C11,C,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
  720. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
  721. X + C
  722. X + C2
  723. X + C3
  724. X + C4
  725. X + C5
  726. X + C6
  727. X + C7
  728. X + C8
  729. X + C9
  730. X + C10
  731. X + C11
  732. X + (C+C2)
  733. X + (C+C3)
  734. X + (C+C4)
  735. X + (C+C5)
  736. X + (C+C6)
  737. X + (C+C7)
  738. X + (C+C8)
  739. X + (C+C9)
  740. X + (C+C10)
  741. X + (C+C11)
  742. X + (C+C2+C3)
  743. X + (C+C2+C4)
  744. X + (C+C2+C5)
  745. X + (C+C2+C6)
  746. X + (C+C2+C7)
  747. X + (C+C2+C8)
  748. X + (C+C2+C9)
  749. X + (C+C2+C10)
  750. X + (C+C2+C11)
  751. X + (C+C2+C3+C4)
  752. X + (C+C2+C3+C5)
  753. X + (C+C2+C3+C6)
  754. X + (C+C2+C3+C7)
  755. X + (C+C2+C3+C8)
  756. X + (C+C2+C3+C9)
  757. X + (C+C2+C3+C10)
  758. X + (C+C2+C3+C11)
  759. X + (C+C2+C3+C4+C5)
  760. X + (C+C2+C3+C4+C6)
  761. X + (C+C2+C3+C4+C7)
  762. X + (C+C2+C3+C4+C8)
  763. X + (C+C2+C3+C4+C9)
  764. X + (C+C2+C3+C4+C10)
  765. X + (C+C2+C3+C4+C11)
  766. X + (C+C2+C3+C4+C5+C6)
  767. X + (C+C2+C3+C4+C5+C7)
  768. X + (C+C2+C3+C4+C5+C8)
  769. X + (C+C2+C3+C4+C5+C9)
  770. X + (C+C2+C3+C4+C5+C10)
  771. X + (C+C2+C3+C4+C5+C11)
  772. X + (C+C2+C3+C4+C5+C6+C7)
  773. X + (C+C2+C3+C4+C5+C6+C8)
  774. X + (C+C2+C3+C4+C5+C6+C9)
  775. X + (C+C2+C3+C4+C5+C6+C10)
  776. X + (C+C2+C3+C4+C5+C6+C11)
  777. X + (C+C2+C3+C4+C5+C6+C7+C8)
  778. X + (C+C2+C3+C4+C5+C6+C7+C9)
  779. X + (C+C2+C3+C4+C5+C6+C7+C10)
  780. X + (C+C2+C3+C4+C5+C6+C7+C11)
  781. X + (C+C2+C3+C4+C5+C6+C7+C8+C9)
  782. X + (C+C2+C3+C4+C5+C6+C7+C8+C10)
  783. X + (C+C2+C3+C4+C5+C6+C7+C8+C11)
  784. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C10)
  785. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C11)
  786. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)
  787. X * C
  788. X * C2
  789. X * C3
  790. X * C4
  791. X * C5
  792. X * C6
  793. X * C7
  794. X * C8
  795. X * C9
  796. X * C10
  797. X * C11
  798. X * (C*C2)
  799. X * (C*C3)
  800. X * (C*C4)
  801. X * (C*C5)
  802. X * (C*C6)
  803. X * (C*C7)
  804. X * (C*C8)
  805. X * (C*C9)
  806. X * (C*C10)
  807. X * (C*C11)
  808. X * (C*C2*C3)
  809. X * (C*C2*C4)
  810. X * (C*C2*C5)
  811. X * (C*C2*C6)
  812. X * (C*C2*C7)
  813. X * (C*C2*C8)
  814. X * (C*C2*C9)
  815. X * (C*C2*C10)
  816. X * (C*C2*C11)
  817. X * (C*C2*C3*C4)
  818. X * (C*C2*C3*C5)
  819. X * (C*C2*C3*C6)
  820. X * (C*C2*C3*C7)
  821. X * (C*C2*C3*C8)
  822. X * (C*C2*C3*C9)
  823. X * (C*C2*C3*C10)
  824. X * (C*C2*C3*C11)
  825. X * (C*C2*C3*C4*C5)
  826. X * (C*C2*C3*C4*C6)
  827. X * (C*C2*C3*C4*C7)
  828. X * (C*C2*C3*C4*C8)
  829. X * (C*C2*C3*C4*C9)
  830. X * (C*C2*C3*C4*C10)
  831. X * (C*C2*C3*C4*C11)
  832. X * (C*C2*C3*C4*C5*C6)
  833. X * (C*C2*C3*C4*C5*C7)
  834. X * (C*C2*C3*C4*C5*C8)
  835. X * (C*C2*C3*C4*C5*C9)
  836. X * (C*C2*C3*C4*C5*C10)
  837. X * (C*C2*C3*C4*C5*C11)
  838. X * (C*C2*C3*C4*C5*C6*C7)
  839. X * (C*C2*C3*C4*C5*C6*C8)
  840. X * (C*C2*C3*C4*C5*C6*C9)
  841. X * (C*C2*C3*C4*C5*C6*C10)
  842. X * (C*C2*C3*C4*C5*C6*C11)
  843. X * (C*C2*C3*C4*C5*C6*C7*C8)
  844. X * (C*C2*C3*C4*C5*C6*C7*C9)
  845. X * (C*C2*C3*C4*C5*C6*C7*C10)
  846. X * (C*C2*C3*C4*C5*C6*C7*C11)
  847. X * (C*C2*C3*C4*C5*C6*C7*C8*C9)
  848. X * (C*C2*C3*C4*C5*C6*C7*C8*C10)
  849. X * (C*C2*C3*C4*C5*C6*C7*C8*C11)
  850. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C10)
  851. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C11)
  852. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)
  853. X^C
  854. X^C2
  855. X^C3
  856. X^C4
  857. X^C5
  858. X^C6
  859. X^C7
  860. X^C8
  861. X^C9
  862. X^C10
  863. X^C11
  864. X^(C+C2)
  865. X^(C+C3)
  866. X^(C+C4)
  867. X^(C+C5)
  868. X^(C+C6)
  869. X^(C+C7)
  870. X^(C+C8)
  871. X^(C+C9)
  872. X^(C+C10)
  873. X^(C+C11)
  874. X^(C+C2+C3)
  875. X^(C+C2+C4)
  876. X^(C+C2+C5)
  877. X^(C+C2+C6)
  878. X^(C+C2+C7)
  879. X^(C+C2+C8)
  880. X^(C+C2+C9)
  881. X^(C+C2+C10)
  882. x^(C+C2+C11)
  883. X^(C+C2+C3+C4)
  884. X^(C+C2+C3+C5)
  885. X^(C+C2+C3+C6)
  886. X^(C+C2+C3+C7)
  887. X^(C+C2+C3+C8)
  888. X^(C+C2+C3+C9)
  889. X^(C+C2+C3+C10)
  890. X^(C+C2+C3+C11)
  891. X^(C+C2+C3+C4+C5)
  892. X^(C+C2+C3+C4+C6)
  893. X^(C+C2+C3+C4+C7)
  894. X^(C+C2+C3+C4+C8)
  895. X^(C+C2+C3+C4+C9)
  896. X^(C+C2+C3+C4+C10)
  897. X^(C+C2+C3+C4+C11)
  898. X^(C+C2+C3+C4+C5+C6)
  899. X^(C+C2+C3+C4+C5+C7)
  900. X^(C+C2+C3+C4+C5+C8)
  901. X^(C+C2+C3+C4+C5+C9)
  902. X^(C+C2+C3+C3+C5+C10)
  903. X^(C+C2+C3+C4+C5+C11)
  904. X^(C+C2+C3+C4+C5+C6+C7)
  905. X^(C+C2+C3+C4+C5+C6+C8)
  906. X^(C+C2+C3+C4+C5+C6+C9)
  907. X^(C+C2+C3+C4+C5+C6+C10)
  908. X^(C+C2+C3+C4+C5+C6+C11)
  909. X^(C+C2+C3+C4+C5+C6+C7+C8)
  910. X^(C+C2+C3+C4+C5+C6+C7+C9)
  911. X^(C+C2+C3+C4+C5+C6+C7+C10)
  912. X^(C+C2+C3+C4+C5+C6+C7+C11)
  913. X^(C+C2+C3+C4+C5+C6+C7+C8+C9)
  914. X^(C+C2+C3+C4+C5+C6+C7+C8+C10)
  915. X^(C+C2+C3+C4+C5+C6+C7+C8+C11)
  916. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C10)
  917. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C11)
  918. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)
  919. X^(C*C)
  920. X^(C*C2)
  921. X^(C*C3)
  922. X^(C*C4)
  923. X^(C*C5)
  924. X^(C*C6)
  925. X^(C*C7)
  926. X^(C*C8)
  927. X^(C*C9)
  928. X^(C*C10)
  929. X^(C*C11)
  930. X^(C*C2*C3)
  931. X^(C*C2*C4)
  932. X^(C*C2*C5)
  933. X^(C*C2*C6)
  934. X^(C*C2*C7)
  935. X^(C*C2*C8)
  936. X^(C*C2*C9)
  937. X^(C*C2*C10)
  938. X^(C*C2*C11)
  939. X^(C*C2*C3*C4)
  940. X^(C*C2*C3*C5)
  941. X^(C*C2*C3*C6)
  942. X^(C*C2*C3*C7)
  943. X^(C*C2*C3*C8)
  944. X^(C*C2*C3*C9)
  945. X^(C*C2*C3*C10)
  946. X^(C*C2*C3*C11)
  947. X^(C*C2*C3*C4*C5)
  948. X^(C*C2*C3*C4*C6)
  949. X^(C*C2*C3*C4*C7)
  950. X^(C*C2*C3*C4*C8)
  951. X^(C*C2*C3*C4*C9)
  952. X^(C*C2*C3*C4*C10)
  953. X^(C*C2*C3*C4*C11)
  954. X^(C*C2*C3*C4*C5*C6)
  955. X^(C*C2*C3*C4*C5*C7)
  956. X^(C*C2*C3*C4*C5*C8)
  957. X^(C*C2*C3*C4*C5*C9)
  958. X^(C*C2*C3*C4*C5*C10)
  959. X^(C*C2*C3*C4*C5*C11)
  960. X^(C*C2*C3*C4*C5*C6*C7)
  961. X^(C*C2*C3*C4*C5*C6*C8)
  962. X^(C*C2*C3*C4*C5*C6*C9)
  963. X^(C*C2*C3*C4*C5*C6*C10)
  964. X^(C*C2*C3*C4*C5*C6*C11)
  965. X^(C*C2*C3*C4*C5*C6*C7*C8)
  966. X^(C*C2*C3*C4*C5*C6*C7*C9)
  967. X^(C*C2*C3*C4*C5*C6*C7*C10)
  968. X^(C*C2*C3*C4*C5*C6*C7*C11)
  969. X^(C*C2*C3*C4*C5*C6*C7*C8*C9)
  970. X^(C*C2*C3*C4*C5*C6*C7*C8*C10)
  971. X^(C*C2*C3*C4*C5*C6*C7*C8*C11)
  972. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C10)
  973. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C11)
  974. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)
  975. X^(C^C)
  976. X^(C^C2)
  977. X^(C^C3)
  978. X^(C^C4)
  979. X^(C^C5)
  980. X^(C^C6)
  981. X^(C^C7)
  982. X^(C^C8)
  983. X^(C^C9)
  984. X^(C^C10)
  985. X^(C^C11)
  986. X^(C^C2^C3)
  987. X^(C^C2^C4)
  988. X^(C^C2^C5)
  989. X^(C^C2^C6)
  990. X^(C^C2^C7)
  991. X^(C^C2^C8)
  992. X^(C^C2^C9)
  993. X^(C^C2^C10)
  994. X^(C^C2^C11)
  995. X^(C^C2^C3^C4)
  996. X^(C^C2^C3^C5)
  997. X^(C^C2^C3^C6)
  998. X^(C^C2^C3^C7)
  999. X^(C^C2^C3^C8)
  1000. X^(C^C2^C3^C9)
  1001. X^(C^C2^C3^C10)
  1002. X^(C^C2^C3^C11)
  1003. X^(C^C2^C3^C4^C5)
  1004. X^(C^C2^C3^C4^C6)
  1005. X^(C^C2^C3^C4^C7)
  1006. X^(C^C2^C3^C4^C8)
  1007. X^(C^C2^C3^C4^C9)
  1008. X^(C^C2^C3^C4^C10)
  1009. X^(C^C2^C3^C4^C11)
  1010. X^(C^C2^C3^C4^C5^C6)
  1011. X^(C^C2^C3^C4^C5^C7)
  1012. X^(C^C2^C3^C4^C5^C8)
  1013. X^(C^C2^C3^C4^C5^C9)
  1014. X^(C^C2^C3^C4^C5^C10)
  1015. X^(C^C2^C3^C4^C5^C11)
  1016. X^(C^C2^C3^C4^C5^C6^C7)
  1017. X^(C^C2^C3^C4^C5^C6^C8)
  1018. X^(C^C2^C3^C4^C5^C6^C9)
  1019. X^(C^C2^C3^C4^C5^C6^C10)
  1020. X^(C^C2^C3^C4^C5^C6^C11)
  1021. X^(C^C2^C3^C4^C5^C6^C7^C8)
  1022. X^(C^C2^C3^C4^C5^C6^C7^C9)
  1023. X^(C^C2^C3^C4^C5^C6^C7^C10)
  1024. X^(C^C2^C3^C4^C5^C6^C7^C11)
  1025. X^(C^C2^C3^C4^C5^C6^C7^C8^C9)
  1026. X^(C^C2^C3^C4^C5^C6^C7^C8^C10)
  1027. X^(C^C2^C3^C4^C5^C6^C7^C8^C11)
  1028. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C10)
  1029. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C11)
  1030. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11)
    Create an alternate version of Croutonillion by stopping here. Call this number C12.
  1031. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}X
  1032. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}X
  1033. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}X
  1034. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}X
  1035. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}X
  1036. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}X
  1037. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}X
  1038. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}X
  1039. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}X
  1040. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}X
  1041. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}X
  1042. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}X
  1043. 9876543210123456789{X}C{X}C2{X}C3{X}C4{X}C5{X}C6{X}C7{X}C8{X}C9{X}C10{X}C11{X}C12{X}
  1044. C12^C11^C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X
  1045. X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12
  1046. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 1,1-2,1-2-3,1-2-....-1043-1044,1-2-...-1044-1045
  1047. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 1046,1046-1045,1046-1045-1044,.......,1046-1045-1044-....-3-2-1.
  1048. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^B1
  1049. X&&&X
  1050. X!!!!!!!!!!!!!!!!!! (multifactorial)
  1051. X!!!!!!!!!!!!!!!!!! (nested factorial)
  1052.  !!!!!!!!!!!X (nested subfactorial)
  1053. TREE(TREE(X))
  1054. X^BB(Rayo(Xi(X)))
  1055. X^(103*103*103*103*103*103*103*103000000+3)
  1056. X^(E100#####100)
  1057. X^{10,10 (100) 2}2
  1058. X^{10,10 (100) 2}3
  1059. X^{10,10 (100) 2}gongulus
  1060. X^X + C12 - repeat this step [25*8+12/12]!^123 times
  1061. X^(104)
  1062. X^(685410196625)
  1063. X^(745627189362583526)
  1064. X^(314151617181912921222324252627)
  1065. X^(103*103*1090+3+3)
  1066. X^(103*103*1093+3+3)
  1067. X^(101010100-1-1-1)
  1068. X![{10,10 (100) 2}2]
  1069. X![{10,10 (100) 2}3]
  1070. X![{10,10 (100) 2}gongulus]
  1071. (X#{10,10 (100) 2}2)#######......(X#{10,10 (100) 2}3 times #)......######(X#{10,10 (100) 2}gongulus)
  1072. X^^^^^^^^(X^4)
  1073. 1234218492548476396739648483215434254518184155243664758217545266434286615357616487456487665798786078789686188068779898515526023615566485866408897512853491356X
  1074. X^^^^^^DRESSING27 (base 27 with A = 1, B = 2, etc.)
  1075. X^^^^^^^^LETTUCE27 (same)
  1076. {X, X (TOMATOES27) 2} (same)
  1077. {X, X (CROUTONS27) 3} (same)
  1078. {X, X, X, X, (0, DRESSING27) 5} (same)
  1079. X![X,X,X,X,......X^(E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)...,X,X,X,X)
  1080. X%(616^666{{#,#,#,#,#,#}&#&#}666)
  1081. repeat step 1,1-2,1-2-3,....,1-2-3-.....-1079-1080, go back in reverse order from 1080,1079-1078,1080-1079-1078,......,1080-1079-1078-........-3,2-1, repeat this process for {(X$)^{L&L...L&L100,10}10,10 (L L's)}!{X, X, X, X,.....((E100{#,#(1)2}44,435,622#2) copies of X...., X, X, X} times
  1082. \(C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12\)
  1083. X^(CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X)$
  1084. C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X
  1085. FOOT(Rayo(TREE(SCG(11122121132312314221432141253412351246351234675375613+X^^^785614385768194371739678901467808950183467829)))))
  1086. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]
  1087. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX
  1088. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X
  1089. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X
  1090. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X
  1091. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X
  1092. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X
  1093. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X
  1094. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X
  1095. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X
  1096. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X
  1097. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X
  1098. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X
  1099. E987654321234567890{#,#(1)2}X
  1100. E987654321234567890{#,#,1,1,2}X
  1101. E987654321234567890{#,#,1,#}X
  1102. E987654321234567890{#,#,1,3}X
  1103. E987654321234567890{#,#,#,2}X
  1104. E987654321234567890{#,{#,#,1,2},1,2}X
  1105. E987654321234567890{#,#+2,1,2}X
  1106. E987654321234567890#*(#*^#)#X
  1107. E987654321234567890#**^#X
  1108. E987654321234567890#*^#X
  1109. E987654321234567890&(&(#))X
  1110. E987654321234567890&(#)X
  1111. E987654321234567890&(1)X
  1112. E987654321234567890{#,#,1,2}X
  1113. E987654321234567890#^^^#X
  1114. E987654321234567890#^^#^^#X
  1115. E987654321234567890#^^##X
  1116. E987654321234567890#^^#>#^^#X
  1117. E987654321234567890#^^#>#X
  1118. E987654321234567890#^^#X
  1119. E987654321234567890#^#^#X
  1120. E987654321234567890#^##X
  1121. E987654321234567890#^#X
  1122. E987654321234567890##X
  1123. E987654321234567890#X
    Create an alternate version of Croutonillion by stopping here. Call this number C13
  1124. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X)
  1125. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X)
  1126. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X)
  1127. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X)
  1128. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X)
  1129. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X)
  1130. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X)
  1131. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X)
  1132. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X)
  1133. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X)
  1134. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X)
  1135. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X)
  1136. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X)
  1137. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X)
  1138. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X)
  1139. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X)
  1140. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X)
  1141. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X)
  1142. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X)
  1143. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X)
  1144. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X)
  1145. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X)
  1146. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X)
  1147. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X)
  1148. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X)
  1149. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X)
  1150. repeat step 1-1148 for X![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13] times
  1151. repeat step 1-1149 for X![C,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2] times
  1152. repeat step 1-1150 for X![C,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3] times
  1153. repeat step 1-1151 for X![C,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4] times
  1154. repeat step 1-1152 for X![C,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5] times
  1155. repeat step 1-1153 for X![C,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6] times
  1156. repeat step 1-1154 for X![C,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7] times
  1157. repeat step 1-1155 for X![C,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8] times
  1158. repeat step 1-1156 for X![C,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8,C9] times
  1159. repeat step 1-1157 for X![C,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
  1160. repeat step 1-1158 for X![C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C] times
  1161. repeat step 1-1159 for X![C2,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C3] times
  1162. repeat step 1-1160 for X![C2,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C3,C4] times
  1163. repeat step 1-1161 for X![C2,C6,C7,C8,C9,C10,C11,C12,C13,C,C3,C4,C5] times
  1164. repeat step 1-1162 for X![C2,C7,C8,C9,C10,C11,C12,C13,C,C3,C4,C5,C6] times
  1165. repeat step 1-1163 for X![C2,C8,C9,C10,C11,C12,C13,C,C3,C4,C5,C6,C7] times
  1166. repeat step 1-1164 for X![C2,C9,C10,C11,C12,C13,C,C3,C4,C5,C6,C7,C8] times
  1167. repeat step 1-1165 for X![C2,C10,C11,C12,C13,C,C3,C4,C5,C6,C7,C8,C9] times
  1168. repeat step 1-1166 for X![C2,C11,C12,C13,C,C3,C4,C5,C6,C7,C8,C9,C10] times
  1169. repeat step 1-1167 for X![C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2] times
  1170. repeat step 1-1168 for X![C3,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C4] times
  1171. repeat step 1-1169 for X![C3,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C4,C5] times
  1172. repeat step 1-1170 for X![C3,C7,C8,C9,C10,C11,C12,C13,C,C2,C4,C5,C6] times
  1173. repeat step 1-1171 for X![C3,C8,C9,C10,C11,C12,C13,C,C2,C4,C5,C6,C7] times
  1174. repeat step 1-1172 for X![C3,C9,C10,C11,C12,C13,C,C2,C4,C5,C6,C7,C8] times
  1175. repeat step 1-1173 for X![C3,C10,C11,C12,C13,C,C2,C4,C5,C6,C7,C8,C9] times
  1176. repeat step 1-1174 for X![C3,C11,C12,C13,C,C2,C4,C5,C6,C7,C8,C9,C10] times
  1177. repeat step 1-1175 for X![C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3] times
  1178. repeat step 1-1176 for X![C4,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C5] times
  1179. repeat step 1-1177 for X![C4,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C5,C6] times
  1180. repeat step 1-1178 for X![C4,C8,C9,C10,C11,C12,C13,C,C2,C3,C5,C6,C7] times
  1181. repeat step 1-1179 for X![C4,C9,C10,C11,C12,C13,C,C2,C3,C5,C6,C7,C8] times
  1182. repeat step 1-1180 for X![C4,C10,C11,C12,C13,C,C2,C3,C5,C6,C7,C8,C9] times
  1183. repeat step 1-1181 for X![C4,C11,C12,C13,C,C2,C3,C5,C6,C7,C8,C9,C10] times
  1184. repeat step 1-1182 for X![C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4] times
  1185. repeat step 1-1183 for X![C5,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C6] times
  1186. repeat step 1-1184 for X![C5,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C6,C7] times
  1187. repeat step 1-1185 for X![C5,C9,C10,C11,C12,C13,C,C2,C3,C4,C6,C7,C8] times
  1188. repeat step 1-1186 for X![C5,C10,C11,C12,C13,C,C2,C3,C4,C6,C7,C8,C9] times
  1189. repeat step 1-1187 for X![C5,C11,C12,C13,C,C2,C3,C4,C6,C7,C8,C9,C10] times
  1190. repeat step 1-1188 for X![C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5] times
  1191. repeat step 1-1189 for X![C6,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C7] times
  1192. repeat step 1-1190 for X![C6,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C7,C8] times
  1193. repeat step 1-1191 for X![C6,C10,C11,C12,C13,C,C2,C3,C4,C5,C7,C8,C9] times
  1194. repeat step 1-1192 for X![C6,C11,C12,C13,C,C2,C3,C4,C5,C7,C8,C9,C10] times
  1195. repeat step 1-1193 for X![C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6] times
  1196. repeat step 1-1194 for X![C7,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C8] times
  1197. repeat step 1-1195 for X![C7,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C8,C9] times
  1198. repeat step 1-1196 for X![C7,C11,C12,C13,C,C2,C3,C4,C5,C6,C8,C9,C10] times
  1199. repeat step 1-1197 for X![C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7] times
  1200. repeat step 1-1198 for X![C8,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C9] times
  1201. repeat step 1-1199 for X![C8,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C9,C10] times
  1202. repeat step 1-1200 for X![C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8] times
  1203. repeat step 1-1201 for X![C9,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C10] times
  1204. repeat step 1-1202 for X![C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9] times
  1205. repeat step 1-1203 for X![C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
  1206. repeat step 1-1204 for X![C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11] times
  1207. repeat step 1-1205 for X![C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12] times
  1208. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
  1209. 984.734.546.347.976.521.896.756.997.^431,112,937.985.432.657.863.888.427.999#^^^^########^^^^######>#^##
  1210. 643.732.547.543.876.975.325.553.424.655.432.598.000^(X^X^X^X^......(X Times X)...X^X^X^)
  1211. 1234567898765432123456789876543212345678987654321234567898765432123456789876543212345678969^^^^^^^^^^^^^^^^^^^^^^^X
  1212. 864209753186427531642531423120{864209753186427531642531423120}X
  1213. {987654321234567890,X(987654321234567890)987654321234567890}
  1214. {9876543210,9876543210(X,X)9876543210}
  1215. E(Y)Y#^^...^^#^#Y (X ^'s), where Y is Rayo's X-th number
  1216. {X(0(X+1)->{X+1})X}***...***^^^...^^^###...###\\\...\\\///...///{X(0(X+1)->{X+1})X} with {X(0(X+1)->{X+1})X} *'s and ^'s and #'s and \'s and /'s
  1217. \(\Xi^{\Xi(X)}(\Sigma_{X-1}(X))^{\text{Fish number X}}\$[[987654321012345678987654321234567890]_X]\)bracewah
  1218. repeat step 1-1216 then 1216-1 for {(X%X#X)![X%X#X]} times
  1219. X + (C^X)
  1220. X + (C2^X)
  1221. X + (C3^X)
  1222. X + (C4^X)
  1223. X + (C5^X)
  1224. X + (C6^X)
  1225. X + (C7^X)
  1226. X + (C8^X)
  1227. X + (C9^X)
  1228. X + (C10^X)
  1229. X + (C11^X)
  1230. X + (C12^X)
  1231. X + (C13^X)
  1232. X + ((C+C2)^X)
  1233. X + ((C+C3)^X)
  1234. X + ((C+C4)^X)
  1235. X + ((C+C5)^X)
  1236. X + ((C+C6)^X)
  1237. X + ((C+C7)^X)
  1238. X + ((C+C8)^X)
  1239. X + ((C+C9)^X)
  1240. X + ((C+C10)^X)
  1241. X + ((C+C11)^X)
  1242. X + ((C+C12)^X)
  1243. X + ((C+C13)^X)
  1244. X + ((C+C2+C3)^X)
  1245. X + ((C+C2+C4)^X)
  1246. X + ((C+C2+C5)^X)
  1247. X + ((C+C2+C6)^X)
  1248. X + ((C+C2+C7)^X)
  1249. X + ((C+C2+C8)^X)
  1250. X + ((C+C2+C9)^X)
  1251. X + ((C+C2+C10)^X)
  1252. X + ((C+C2+C11)^X)
  1253. X + ((C+C2+C12)^X)
  1254. X + ((C+C2+C13)^X)
  1255. X + ((C+C2+C3+C4)^X)
  1256. X + ((C+C2+C3+C5)^X)
  1257. X + ((C+C2+C3+C6)^X)
  1258. X + ((C+C2+C3+C7)^X)
  1259. X + ((C+C2+C3+C8)^X)
  1260. X + ((C+C2+C3+C9)^X)
  1261. X + ((C+C2+C3+C10)^X)
  1262. X + ((C+C2+C3+C11)^X)
  1263. X + ((C+C2+C3+C12)^X)
  1264. X + ((C+C2+C3+C13)^X)
  1265. X + ((C+C2+C3+C4+C5)^X)
  1266. X + ((C+C2+C3+C4+C6)^X)
  1267. X + ((C+C2+C3+C4+C7)^X)
  1268. X + ((C+C2+C3+C4+C8)^X)
  1269. X + ((C+C2+C3+C4+C9)^X)
  1270. X + ((C+C2+C3+C4+C10)^X)
  1271. X + ((C+C2+C3+C4+C11)^X)
  1272. X + ((C+C2+C3+C4+C12)^X)
  1273. X + ((C+C2+C3+C4+C13)^X)
  1274. X + ((C+C2+C3+C4+C5+C6)^X)
  1275. X + ((C+C2+C3+C4+C5+C7)^X)
  1276. X + ((C+C2+C3+C4+C5+C8)^X)
  1277. X + ((C+C2+C3+C4+C5+C9)^X)
  1278. X + ((C+C2+C3+C4+C5+C10)^X)
  1279. X + ((C+C2+C3+C4+C5+C11)^X)
  1280. X + ((C+C2+C3+C4+C5+C12)^X)
  1281. X + ((C+C2+C3+C4+C5+C13)^X)
  1282. X + ((C+C2+C3+C4+C5+C6+C7)^X)
  1283. X + ((C+C2+C3+C4+C5+C6+C8)^X)
  1284. X + ((C+C2+C3+C4+C5+C6+C9)^X)
  1285. X + ((C+C2+C3+C4+C5+C6+C10)^X)
  1286. X + ((C+C2+C3+C4+C5+C6+C11)^X)
  1287. X + ((C+C2+C3+C4+C5+C6+C12)^X)
  1288. X + ((C+C2+C3+C4+C5+C6+C13)^X)
  1289. X + ((C+C2+C3+C4+C5+C6+C7+C8)^X)
  1290. X + ((C+C2+C3+C4+C5+C6+C7+C9)^X)
  1291. X + ((C+C2+C3+C4+C5+C6+C7+C10)^X)
  1292. X + ((C+C2+C3+C4+C5+C6+C7+C11)^X)
  1293. X + ((C+C2+C3+C4+C5+C6+C7+C12)^X)
  1294. X + ((C+C2+C3+C4+C5+C6+C7+C13)^X)
  1295. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9)^X)
  1296. X + ((C+C2+C3+C4+C5+C6+C7+C8+C10)^X)
  1297. X + ((C+C2+C3+C4+C5+C6+C7+C8+C11)^X)
  1298. X + ((C+C2+C3+C4+C5+C6+C7+C8+C12)^X)
  1299. X + ((C+C2+C3+C4+C5+C6+C7+C8+C13)^X)
  1300. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10)^X)
  1301. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C11)^X)
  1302. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C12)^X)
  1303. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C13)^X)
  1304. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)^X)
  1305. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C12)^X)
  1306. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C13)^X)
  1307. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12)^X)
  1308. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C13)^X)
  1309. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12+C13)^X)
  1310. X * (C^X)
  1311. X * (C2^X)
  1312. X * (C3^X)
  1313. X * (C4^X)
  1314. X * (C5^X)
  1315. X * (C6^X)
  1316. X * (C7^X)
  1317. X * (C8^X)
  1318. X * (C9^X)
  1319. X * (C10^X)
  1320. X * (C11^X)
  1321. X * (C12^X)
  1322. X * (C13^X)
  1323. X * ((C*C2)^X)
  1324. X * ((C*C3)^X)
  1325. X * ((C*C4)^X)
  1326. X * ((C*C5)^X)
  1327. X * ((C*C6)^X)
  1328. X * ((C*C7)^X)
  1329. X * ((C*C8)^X)
  1330. X * ((C*C9)^X)
  1331. X * ((C*C10)^X)
  1332. X * ((C*C11)^X)
  1333. X * ((C*C12)^X)
  1334. X * ((C*C13)^X)
  1335. X * ((C*C2*C3)^X)
  1336. X * ((C*C2*C4)^X)
  1337. X * ((C*C2*C5)^X)
  1338. X * ((C*C2*C6)^X)
  1339. X * ((C*C2*C7)^X)
  1340. X * ((C*C2*C8)^X)
  1341. X * ((C*C2*C9)^X)
  1342. X * ((C*C2*C10)^X)
  1343. X * ((C*C2*C11)^X)
  1344. X * ((C*C2*C12)^X)
  1345. X * ((C*C2*C13)^X)
  1346. X * ((C*C2*C3*C4)^X)
  1347. X * ((C*C2*C3*C5)^X)
  1348. X * ((C*C2*C3*C6)^X)
  1349. X * ((C*C2*C3*C7)^X)
  1350. X * ((C*C2*C3*C8)^X)
  1351. X * ((C*C2*C3*C9)^X)
  1352. X * ((C*C2*C3*C10)^X)
  1353. X * ((C*C2*C3*C11)^X)
  1354. X * ((C*C2*C3*C12)^X)
  1355. X * ((C*C2*C3*C13)^X)
  1356. X * ((C*C2*C3*C4*C5)^X)
  1357. X * ((C*C2*C3*C4*C6)^X)
  1358. X * ((C*C2*C3*C4*C7)^X)
  1359. X * ((C*C2*C3*C4*C8)^X)
  1360. X * ((C*C2*C3*C4*C9)^X)
  1361. X * ((C*C2*C3*C4*C10)^X)
  1362. X * ((C*C2*C3*C4*C11)^X)
  1363. X * ((C*C2*C3*C4*C12)^X)
  1364. X * ((C*C2*C3*C4*C13)^X)
  1365. X * ((C*C2*C3*C4*C5*C6)^X)
  1366. X * ((C*C2*C3*C4*C5*C7)^X)
  1367. X * ((C*C2*C3*C4*C5*C8)^X)
  1368. X * ((C*C2*C3*C4*C5*C9)^X)
  1369. X * ((C*C2*C3*C4*C5*C10)^X)
  1370. X * ((C*C2*C3*C4*C5*C11)^X)
  1371. X * ((C*C2*C3*C4*C5*C12)^X)
  1372. X * ((C*C2*C3*C4*C5*C13)^X)
  1373. X * ((C*C2*C3*C4*C5*C6*C7)^X)
  1374. X * ((C*C2*C3*C4*C5*C6*C8)^X)
  1375. X * ((C*C2*C3*C4*C5*C6*C9)^X)
  1376. X * ((C*C2*C3*C4*C5*C6*C10)^X)
  1377. X * ((C*C2*C3*C4*C5*C6*C11)^X)
  1378. X * ((C*C2*C3*C4*C5*C6*C12)^X)
  1379. X * ((C*C2*C3*C4*C5*C6*C13)^X)
  1380. X * ((C*C2*C3*C4*C5*C6*C7*C8)^X)
  1381. X * ((C*C2*C3*C4*C5*C6*C7*C9)^X)
  1382. X * ((C*C2*C3*C4*C5*C6*C7*C10)^X)
  1383. X * ((C*C2*C3*C4*C5*C6*C7*C11)^X)
  1384. X * ((C*C2*C3*C4*C5*C6*C7*C12)^X)
  1385. X * ((C*C2*C3*C4*C5*C6*C7*C13)^X)
  1386. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9)^X)
  1387. X * ((C*C2*C3*C4*C5*C6*C7*C8*C10)^X)
  1388. X * ((C*C2*C3*C4*C5*C6*C7*C8*C11)^X)
  1389. X * ((C*C2*C3*C4*C5*C6*C7*C8*C12)^X)
  1390. X * ((C*C2*C3*C4*C5*C6*C7*C8*C13)^X)
  1391. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10)^X)
  1392. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C11)^X)
  1393. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C12)^X)
  1394. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C13)^X)
  1395. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)^X)
  1396. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C12)^X)
  1397. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C13)^X)
  1398. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12)^X)
  1399. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C13)^X)
  1400. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12*C13)^X)
  1401. X^(C^X)
  1402. X^(C2^X)
  1403. X^(C3^X)
  1404. X^(C4^X)
  1405. X^(C5^X)
  1406. X^(C6^X)
  1407. X^(C7^X)
  1408. X^(C8^X)
  1409. X^(C9^X)
  1410. X^(C10^X)
  1411. X^(C11^X)
  1412. X^(C12^X)
  1413. X^(C13^X)
  1414. X^((C+C2)^X)
  1415. X^((C+C3)^X)
  1416. X^((C+C4)^X)
  1417. X^((C+C5)^X)
  1418. X^((C+C6)^X)
  1419. X^((C+C7)^X)
  1420. X^((C+C8)^X)
  1421. X^((C+C9)^X)
  1422. X^((C+C10)^X)
  1423. X^((C+C11)^X)
  1424. X^((C+C12)^X)
  1425. X^((C+C13)^X)
  1426. X^((C+C2+C3)^X)
  1427. X^((C+C2+C4)^X)
  1428. X^((C+C2+C5)^X)
  1429. X^((C+C2+C6)^X)
  1430. X^((C+C2+C7)^X)
  1431. X^((C+C2+C8)^X)
  1432. X^((C+C2+C9)^X)
  1433. X^((C+C2+C10)^X)
  1434. x^((C+C2+C11)^X)
  1435. X^((C+C2+C12)^X)
  1436. x^((C+C2+C13)^X)
  1437. X^((C+C2+C3+C4)^X)
  1438. X^((C+C2+C3+C5)^X)
  1439. X^((C+C2+C3+C6)^X)
  1440. X^((C+C2+C3+C7)^X)
  1441. X^((C+C2+C3+C8)^X)
  1442. X^((C+C2+C3+C9)^X)
  1443. X^((C+C2+C3+C10)^X)
  1444. X^((C+C2+C3+C11)^X)
  1445. X^((C+C2+C3+C12)^X)
  1446. X^((C+C2+C3+C13)^X)
  1447. X^((C+C2+C3+C4+C5)^X)
  1448. X^((C+C2+C3+C4+C6)^X)
  1449. X^((C+C2+C3+C4+C7)^X)
  1450. X^((C+C2+C3+C4+C8)^X)
  1451. X^((C+C2+C3+C4+C9)^X)
  1452. X^((C+C2+C3+C4+C10)^X)
  1453. X^((C+C2+C3+C4+C11)^X)
  1454. X^((C+C2+C3+C4+C12)^X)
  1455. X^((C+C2+C3+C4+C13)^X)
  1456. X^((C+C2+C3+C4+C5+C6)^X)
  1457. X^((C+C2+C3+C4+C5+C7)^X)
  1458. X^((C+C2+C3+C4+C5+C8)^X)
  1459. X^((C+C2+C3+C4+C5+C9)^X)
  1460. X^((C+C2+C3+C3+C5+C10)^X)
  1461. X^((C+C2+C3+C4+C5+C11)^X)
  1462. X^((C+C2+C3+C3+C5+C12)^X)
  1463. X^((C+C2+C3+C4+C5+C13)^X)
  1464. X^((C+C2+C3+C4+C5+C6+C7)^X)
  1465. X^((C+C2+C3+C4+C5+C6+C8)^X)
  1466. X^((C+C2+C3+C4+C5+C6+C9)^X)
  1467. X^((C+C2+C3+C4+C5+C6+C10)^X)
  1468. X^((C+C2+C3+C4+C5+C6+C11)^X)
  1469. X^((C+C2+C3+C4+C5+C6+C12)^X)
  1470. X^((C+C2+C3+C4+C5+C6+C13)^X)
  1471. X^((C+C2+C3+C4+C5+C6+C7+C8)^X)
  1472. X^((C+C2+C3+C4+C5+C6+C7+C9)^X)
  1473. X^((C+C2+C3+C4+C5+C6+C7+C10)^X)
  1474. X^((C+C2+C3+C4+C5+C6+C7+C11)^X)
  1475. X^((C+C2+C3+C4+C5+C6+C7+C12)^X)
  1476. X^((C+C2+C3+C4+C5+C6+C7+C13)^X)
  1477. X^((C+C2+C3+C4+C5+C6+C7+C8+C9)^X)
  1478. X^((C+C2+C3+C4+C5+C6+C7+C8+C10)^X)
  1479. X^((C+C2+C3+C4+C5+C6+C7+C8+C11)^X)
  1480. X^((C+C2+C3+C4+C5+C6+C7+C8+C12)^X)
  1481. X^((C+C2+C3+C4+C5+C6+C7+C8+C13)^X)
  1482. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10)^X)
  1483. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C11)^X)
  1484. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C12)^X)
  1485. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C13)^X)
  1486. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)^X)
  1487. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C12)^X)
  1488. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C13)^X)
  1489. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12)^X)
  1490. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C13)^X)
  1491. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12+C13)^X)
  1492. X^((C*C)^X)
  1493. X^((C*C2)^X)
  1494. X^((C*C3)^X)
  1495. X^((C*C4)^X)
  1496. X^((C*C5)^X)
  1497. X^((C*C6)^X)
  1498. X^((C*C7)^X)
  1499. X^((C*C8)^X)
  1500. X^((C*C9)^X)
  1501. X^((C*C10)^X)
  1502. X^((C*C11)^X)
  1503. X^((C*C12)^X)
  1504. X^((C*C13)^X)
  1505. X^((C*C2*C3)^X)
  1506. X^((C*C2*C4)^X)
  1507. X^((C*C2*C5)^X)
  1508. X^((C*C2*C6)^X)
  1509. X^((C*C2*C7)^X)
  1510. X^((C*C2*C8)^X)
  1511. X^((C*C2*C9)^X)
  1512. X^((C*C2*C10)^X)
  1513. X^((C*C2*C11)^X)
  1514. X^((C*C2*C12)^X)
  1515. X^((C*C2*C13)^X)
  1516. X^((C*C2*C3*C4)^X)
  1517. X^((C*C2*C3*C5)^X)
  1518. X^((C*C2*C3*C6)^X)
  1519. X^((C*C2*C3*C7)^X)
  1520. X^((C*C2*C3*C8)^X)
  1521. X^((C*C2*C3*C9)^X)
  1522. X^((C*C2*C3*C10)^X)
  1523. X^((C*C2*C3*C11)^X)
  1524. X^((C*C2*C3*C12)^X)
  1525. X^((C*C2*C3*C13)^X)
  1526. X^((C*C2*C3*C4*C5)^X)
  1527. X^((C*C2*C3*C4*C6)^X)
  1528. X^((C*C2*C3*C4*C7)^X)
  1529. X^((C*C2*C3*C4*C8)^X)
  1530. X^((C*C2*C3*C4*C9)^X)
  1531. X^((C*C2*C3*C4*C10)^X)
  1532. X^((C*C2*C3*C4*C11)^X)
  1533. X^((C*C2*C3*C4*C12)^X)
  1534. X^((C*C2*C3*C4*C13)^X)
  1535. X^((C*C2*C3*C4*C5*C6)^X)
  1536. X^((C*C2*C3*C4*C5*C7)^X)
  1537. X^((C*C2*C3*C4*C5*C8)^X)
  1538. X^((C*C2*C3*C4*C5*C9)^X)
  1539. X^((C*C2*C3*C4*C5*C10)^X)
  1540. X^((C*C2*C3*C4*C5*C11)^X)
  1541. X^((C*C2*C3*C4*C5*C12)^X)
  1542. X^((C*C2*C3*C4*C5*C13)^X)
  1543. X^((C*C2*C3*C4*C5*C6*C7)^X)
  1544. X^((C*C2*C3*C4*C5*C6*C8)^X)
  1545. X^((C*C2*C3*C4*C5*C6*C9)^X)
  1546. X^((C*C2*C3*C4*C5*C6*C10)^X)
  1547. X^((C*C2*C3*C4*C5*C6*C11)^X)
  1548. X^((C*C2*C3*C4*C5*C6*C12)^X)
  1549. X^((C*C2*C3*C4*C5*C6*C13)^X)
  1550. X^((C*C2*C3*C4*C5*C6*C7*C8)^X)
  1551. X^((C*C2*C3*C4*C5*C6*C7*C9)^X)
  1552. X^((C*C2*C3*C4*C5*C6*C7*C10)^X)
  1553. X^((C*C2*C3*C4*C5*C6*C7*C11)^X)
  1554. X^((C*C2*C3*C4*C5*C6*C7*C12)^X)
  1555. X^((C*C2*C3*C4*C5*C6*C7*C13)^X)
  1556. X^((C*C2*C3*C4*C5*C6*C7*C8*C9)^X)
  1557. X^((C*C2*C3*C4*C5*C6*C7*C8*C10)^X)
  1558. X^((C*C2*C3*C4*C5*C6*C7*C8*C11)^X)
  1559. X^((C*C2*C3*C4*C5*C6*C7*C8*C12)^X)
  1560. X^((C*C2*C3*C4*C5*C6*C7*C8*C13)^X)
  1561. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10)^X)
  1562. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C11)^X)
  1563. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C12)^X)
  1564. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C13)^X)
  1565. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)^X)
  1566. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C12)^X)
  1567. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C13)^X)
  1568. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12)^X)
  1569. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C13)^X)
  1570. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12*C13)^X)
  1571. X^((C^C)^X)
  1572. X^((C^C2)^X)
  1573. X^((C^C3)^X)
  1574. X^((C^C4)^X)
  1575. X^((C^C5)^X)
  1576. X^((C^C6)^X)
  1577. X^((C^C7)^X)
  1578. X^((C^C8)^X)
  1579. X^((C^C9)^X)
  1580. X^((C^C10)^X)
  1581. X^((C^C11)^X)
  1582. X^((C^C12)^X)
  1583. X^((C^C13)^X)
  1584. X^((C^C2^C3)^X)
  1585. X^((C^C2^C4)^X)
  1586. X^((C^C2^C5)^X)
  1587. X^((C^C2^C6)^X)
  1588. X^((C^C2^C7)^X)
  1589. X^((C^C2^C8)^X)
  1590. X^((C^C2^C9)^X)
  1591. X^((C^C2^C10)^X)
  1592. X^((C^C2^C11)^X)
  1593. X^((C^C2^C12)^X)
  1594. X^((C^C2^C13)^X)
  1595. X^((C^C2^C3^C4)^X)
  1596. X^((C^C2^C3^C5)^X)
  1597. X^((C^C2^C3^C6)^X)
  1598. X^((C^C2^C3^C7)^X)
  1599. X^((C^C2^C3^C8)^X)
  1600. X^((C^C2^C3^C9)^X)
  1601. X^((C^C2^C3^C10)^X)
  1602. X^((C^C2^C3^C11)^X)
  1603. X^((C^C2^C3^C12)^X)
  1604. X^((C^C2^C3^C13)^X)
  1605. X^((C^C2^C3^C4^C5)^X)
  1606. X^((C^C2^C3^C4^C6)^X)
  1607. X^((C^C2^C3^C4^C7)^X)
  1608. X^((C^C2^C3^C4^C8)^X)
  1609. X^((C^C2^C3^C4^C9)^X)
  1610. X^((C^C2^C3^C4^C10)^X)
  1611. X^((C^C2^C3^C4^C11)^X)
  1612. X^((C^C2^C3^C4^C12)^X)
  1613. X^((C^C2^C3^C4^C13)^X)
  1614. X^((C^C2^C3^C4^C5^C6)^X)
  1615. X^((C^C2^C3^C4^C5^C7)^X)
  1616. X^((C^C2^C3^C4^C5^C8)^X)
  1617. X^((C^C2^C3^C4^C5^C9)^X)
  1618. X^((C^C2^C3^C4^C5^C10)^X)
  1619. X^((C^C2^C3^C4^C5^C11)^X)
  1620. X^((C^C2^C3^C4^C5^C12)^X)
  1621. X^((C^C2^C3^C4^C5^C13)^X)
  1622. X^((C^C2^C3^C4^C5^C6^C7)^X)
  1623. X^((C^C2^C3^C4^C5^C6^C8)^X)
  1624. X^((C^C2^C3^C4^C5^C6^C9)^X)
  1625. X^((C^C2^C3^C4^C5^C6^C10)^X)
  1626. X^((C^C2^C3^C4^C5^C6^C11)^X)
  1627. X^((C^C2^C3^C4^C5^C6^C12)^X)
  1628. X^((C^C2^C3^C4^C5^C6^C13)^X)
  1629. X^((C^C2^C3^C4^C5^C6^C7^C8)^X)
  1630. X^((C^C2^C3^C4^C5^C6^C7^C9)^X)
  1631. X^((C^C2^C3^C4^C5^C6^C7^C10)^X)
  1632. X^((C^C2^C3^C4^C5^C6^C7^C11)^X)
  1633. X^((C^C2^C3^C4^C5^C6^C7^C12)^X)
  1634. X^((C^C2^C3^C4^C5^C6^C7^C13)^X)
  1635. X^((C^C2^C3^C4^C5^C6^C7^C8^C9)^X)
  1636. X^((C^C2^C3^C4^C5^C6^C7^C8^C10)^X)
  1637. X^((C^C2^C3^C4^C5^C6^C7^C8^C11)^X)
  1638. X^((C^C2^C3^C4^C5^C6^C7^C8^C12)^X)
  1639. X^((C^C2^C3^C4^C5^C6^C7^C8^C13)^X)
  1640. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10)^X)
  1641. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C11)^X)
  1642. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C12)^X)
  1643. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C13)^X)
  1644. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11)^X)
  1645. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C12)^X)
  1646. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C13)^X)
  1647. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12)^X)
  1648. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C13)^X)
  1649. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13)^X)
    Create an alternate version of Croutonillion by stopping here. Call this number C14.
  1650. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
  1651. \(C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14\)
  1652. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^X)$)
  1653. (X$)![C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X]
  1654. X^(103*103*103*103*103*103*103*103,000,000+3)
  1655. X^(103*103*103*103*103*103*103*103,000,000,000+3)
  1656. X*(103*103*103*103*103*103*103*103,000,000+3)
  1657. X*[(103*103*103*103*103*103*103*103,000,000,000+3)]
  1658. X!(103*103*103*103*103*103*103*103,000,000+3)
  1659. X!(103*103*103*103*103*103*103*103,000,000,000+3)
  1660. X#(103*103*103*103*103*103*103*103,000,000+3)
  1661. X#(103*103*103*103*103*103*103*103,000,000,000+3)
  1662. X%(103*103*103*103*103*103*103*103,000,000+3)
  1663. X%(103*103*103*103*103*103*103*103,000,000,000+3)
  1664. X^(203,542*10138,732,019,349)
  1665. X^(Picillion)
  1666. X^(\(2 \lfloor 10^{20} / 9\rfloor\))
  1667. X^(103,000,000,000,003)
  1668. X^(Femtillion)
  1669. X^(\(10^{3\times 10^{15}+3}\))
  1670. X^(\(10^{3\times 10^{3,000,000}+3}\))
  1671. X^(Gigillion)
  1672. X^(\(10^{3\times 10^{3,000,000,000}+3}\))
  1673. X^(\(2 \lfloor 10,000,000,000^{96,543,220,765,693} / 2\rfloor\))
  1674. X^(\(2 \lfloor 10,000,000,000,000,000^{457,748,896,324,123,446,6720} / 3\rfloor\))
  1675. X + 1
  1676. X + 1
  1677. X + 1
  1678. X^(\(\lbrace \underbrace{13,13,13,\cdots,13,13,13}_{98546372819073826354217927}\rbrace\))
  1679. X^(\(\lbrace \underbrace{3333,3333,3333,\cdots,3333,3333,3333}_{63524162738926354273890825127}\rbrace\))
  1680. X^(\(\lbrace \underbrace{123,123,123,\cdots,123,123,123}_{23415367892635423123425648983762534327}\rbrace\))
  1681. X^(\(\lbrace \underbrace{5673,5673,5673,\cdots,5673,5673,5673}_{87437281984736546378190928746535362784984}\rbrace\))
  1682. X^(\(\lbrace \underbrace{4763,4763,4763,\cdots,4763,4763,4763}_{67354264736547389028190362737487463521185}\rbrace\))
  1683. X^(\(\lbrace \underbrace{3333,3333,3333,\cdots,3333,3333,3333}_{83256174839847569378213546748373647589335}\rbrace\))
  1684. X^(\(\lbrace \underbrace{173,173,173,\cdots,173,173,173}_{43627489574864783647382918746352474859973835236}\rbrace\))
  1685. X^(\(\lbrace \underbrace{579,579,579,\cdots,579,579,579}_{46378291874653748957382984765374637987382989978}\rbrace\))
  1686. X^(\(\lbrace \underbrace{698,698,698,\cdots,698,698,698}_{25362537485904736654738490536478987645794874674}\rbrace\))
  1687. X^(\(\lbrace \underbrace{999,999,999,\cdots,999,999,999}_{99999999999999999999999999999999999999999999999}\rbrace\))
  1688. X^(\(\lbrace \underbrace{888,888,888,\cdots,888,888,888}_{88888888888888888888888888888888888888888888888}\rbrace\))
  1689. X^(\(\lbrace \underbrace{777,777,777,\cdots,777,777,777}_{77777777777777777777777777777777777777777777777}\rbrace\))
  1690. X^(\(\lbrace \underbrace{666,666,666,\cdots,666,666,666}_{66666666666666666666666666666666666666666666666}\rbrace\))
  1691. X^(\(\lbrace \underbrace{555,555,555,\cdots,555,555,555}_{55555555555555555555555555555555555555555555555}\rbrace\))
  1692. X^(\(\lbrace \underbrace{444,444,444,\cdots,444,444,444}_{44444444444444444444444444444444444444444444444}\rbrace\))
  1693. X^(\(\lbrace \underbrace{333,333,333,\cdots,333,333,333}_{33333333333333333333333333333333333333333333333}\rbrace\))
  1694. X^(\(\lbrace \underbrace{222,222,222,\cdots,222,222,222}_{22222222222222222222222222222222222222222222222}\rbrace\))
  1695. X^(\(\lbrace \underbrace{111,111,111,\cdots,111,111,111}_{1111111111111111111111111111111111111111111111}\rbrace\))
  1696. X^(\(\lbrace \underbrace{987654321,987654321,987654321,\cdots,987654321,987654321,987654321}_{9876543210}\rbrace\))
  1697. X^(\(\lbrace \underbrace{97531,97531,97531,\cdots,97531,97531,97531}_{9753197531975319753197531975319753}\rbrace\))
  1698. X^(\(\lbrace \underbrace{8642,8642,8642,\cdots,8642,8642,8642}_{8642864286428642864286428642864286428642}\rbrace\))
  1699. X^(\(\lbrace \underbrace{999999999,999999999,999999999,\cdots,999999999,999999999,999999999}_{9999999999}\rbrace\))
  1700. X^(\(\lbrace \underbrace{88888888,88888888,88888888,\cdots,88888888,88888888,88888888}_{8888888888888888}\rbrace\))
  1701. X^(\(\lbrace \underbrace{7777777,7777777,7777777,\cdots,7777777,7777777,7777777}_{7777777777777777777777}\rbrace\))
  1702. X^(\(\lbrace \underbrace{666666,666666,666666,\cdots,666666,666666,666666}_{6666666666666666666666666666}\rbrace\))
  1703. X^(\(\lbrace \underbrace{55555,55555,55555,\cdots,55555,55555,55555}_{5555555555555555555555555555555555}\rbrace\))
  1704. X^(\(\lbrace \underbrace{4444,4444,4444,\cdots,4444,4444,4444}_{4444444444444444444444444444444444444444}\rbrace\))
  1705. X^(\(\lbrace \underbrace{333,333,333,\cdots,333,333,333}_{3333333333333333333333333333333333333333333333}\rbrace\))
  1706. X^(\(\lbrace \underbrace{22,22,22,\cdots,22,22,22}_{2222222222222222222222222222222222222222222222222222}\rbrace\))
  1707. X^(\(\lbrace \underbrace{10,10,10,\cdots,10,10,10}_{1010101010101010101010101010101010101010101010101010}\rbrace\))
  1708. X^(\(\lbrace \underbrace{12,12,12,\cdots,12,12,12}_{1212121212121212121212121212121212121212121212121212}\rbrace\))
  1709. X^(\(\lbrace \underbrace{23,23,23,\cdots,23,23,23}_{2323232323232323232323232323232323232323232323232323}\rbrace\))
  1710. X^(\(\lbrace \underbrace{34,34,34,\cdots,34,34,34}_{3434343434343434343434343434343434343434343434343434}\rbrace\))
  1711. X^(\(\lbrace \underbrace{45,45,45,\cdots,45,45,45}_{4545454545454545454545454545454545454545454545454545}\rbrace\))
  1712. X^(\(\lbrace \underbrace{56,56,56,\cdots,56,56,56}_{5656565656565656565656565656565656565656565656565656}\rbrace\))
  1713. X^(\(\lbrace \underbrace{67,67,67,\cdots,67,67,67}_{6767676767676767676767676767676767676767676767676767}\rbrace\))
  1714. X^(\(\lbrace \underbrace{78,78,78,\cdots,78,78,78}_{7878787878787878787878787878787878787878787878787878}\rbrace\))
  1715. X^(\(\lbrace \underbrace{89,89,89,\cdots,89,89,89}_{8989898989898989898989898989898989898989898989898989}\rbrace\))
  1716. X^(\(\lbrace \underbrace{90,90,90,\cdots,90,90,90}_{9090909090909090909090909090909090909090909090909090}\rbrace\))
  1717. X^(\(\lbrace \underbrace{987,987,987,\cdots,987,987,987}_{9879879879879879879879879879879879879879879879}\rbrace\))
  1718. X^(\(\lbrace \underbrace{876,876,876,\cdots,876,876,876}_{8768768768768768768768768768768768768768768768}\rbrace\))
  1719. X^(\(\lbrace \underbrace{765,765,765,\cdots,765,765,765}_{7657657657657657657657657657657657657657657657}\rbrace\))
  1720. X^(\(\lbrace \underbrace{654,654,654,\cdots,654,654,654}_{6546546546546546546546546546546546546546546546}\rbrace\))
  1721. X^(\(\lbrace \underbrace{543,543,543,\cdots,543,543,543}_{5435435435435435435435435435435435435435435435}\rbrace\))
  1722. X^(\(\lbrace \underbrace{432,432,432,\cdots,432,432,432}_{4324324324324324324324324324324324324324324324}\rbrace\))
  1723. X^(\(\lbrace \underbrace{321,321,321,\cdots,321,321,321}_{3213213213213213213213213213213213213213213213}\rbrace\))
  1724. X^(\(\lbrace \underbrace{210,210,210,\cdots,210,210,210}_{2102102102102102102102102102102102102102102102}\rbrace\))
  1725. X^(\(\lbrace \underbrace{109,109,109,\cdots,109,109,109}_{1091091091091091091091091091091091091091091091}\rbrace\))
  1726. X^(\(\lbrace \underbrace{246,246,246,\cdots,246,246,246}_{2462462462462462462462462462462462462462462462}\rbrace\))
  1727. X^(\(\lbrace \underbrace{468,468,468,\cdots,468,468,468}_{4684684684684684684684684684684684684684684684}\rbrace\))
  1728. X^(\(\lbrace \underbrace{680,680,680,\cdots,689,680,680}_{6806806806806806806806806806806806806806806806}\rbrace\))
  1729. X^(\(\lbrace \underbrace{135,135,135,\cdots,135,135,135}_{1351351351351351351351351351351351351351351351}\rbrace\))
  1730. X^(\(\lbrace \underbrace{357,357,357,\cdots,357,357,357}_{3573573573573573573573573573573573573573573573}\rbrace\))
  1731. X^(\(\lbrace \underbrace{579,579,579,\cdots,579,579,579}_{5795795795795795795795795795795795795795795795}\rbrace\))
  1732. X^(\(\lbrace \underbrace{791,791,791,\cdots,791,791,791}_{7917917917917917917917917917917917917917917917}\rbrace\))
  1733. X^(\(\lbrace \underbrace{913,913,913,\cdots,913,913,913}_{9139139139139139139139139139139139139139139139}\rbrace\))
  1734. X^(\(\lbrace \underbrace{136,136,136,\cdots,136,136,136}_{1361361361361361361361361361361361361361361361}\rbrace\))
  1735. X^(\(\lbrace \underbrace{350,350,350,\cdots,350,350,350}_{3503503503503503503503503503503503503503503503}\rbrace\))
  1736. X^(\(\lbrace \underbrace{572,572,572,\cdots,572,572,572}_{5725725725725725725725725725725725725725725725}\rbrace\))
  1737. X^(\(\lbrace \underbrace{727,727,727,\cdots,727,727,727}_{7277277277277277277277277277277277277277277277}\rbrace\))
  1738. X^(\(\lbrace \underbrace{275,275,275,\cdots,275,275,275}_{2752752752752752752752752752752752752752752752}\rbrace\))
  1739. X^(\(\lbrace \underbrace{755,755,755,\cdots,755,755,755}_{7557557557557557557557557557557557557557557557}\rbrace\))
  1740. X^(\(\lbrace \underbrace{1030,1030,1030,\cdots,1030,1030,1030}_{1030103010301030103010301030103010301030}\rbrace\))
  1741. X^(\(\lbrace \underbrace{1785,1785,1785,\cdots,1785,1785,1785}_{1785178517851785178517851785178517851785}\rbrace\))
  1742. X^(\(\lbrace \underbrace{2815,2815,2815,\cdots,2815,2815,2815}_{2815281528152815281528152815281528152815}\rbrace\))
  1743. X^(\(\lbrace \underbrace{4600,4600,4600,\cdots,4600,4600,4600}_{4600460046004600460046004600460046004600}\rbrace\))
  1744. X^(\(\lbrace \underbrace{7415,7415,7415,\cdots,7415,7415,7415}_{7415741574157415741574157415741574157415}\rbrace\))
  1745. X^(\(\lbrace \underbrace{12015,12015,12015,\cdots,12015,12015,12015}_{1201512015120151201512015120151201}\rbrace\))
  1746. X^(\(\lbrace \underbrace{17430,17430,17430,\cdots,17430,17430,17430}_{1743017430174301743017430174301743}\rbrace\))
  1747. X^(\(\lbrace \underbrace{29445,29445,29445,\cdots,29445,29445,29445}_{2944529445294452944529445294452944}\rbrace\))
  1748. X^(\(\lbrace \underbrace{46875,46875,46875,\cdots,46875,46875,46875}_{4687546875468754687546875468754687}\rbrace\))
  1749. X^(\(\lbrace \underbrace{75315,75315,75315,\cdots,75315,75315,75315}_{7531575315753157531575315753157531}\rbrace\))
  1750. X^(\(\lbrace \underbrace{121190,121190,121190\cdots,121190,121190,121190}_{12119012119012119012119012119}\rbrace\))
  1751. X^(\(\lbrace \underbrace{196405,196405,196405\cdots,196405,196405,196405}_{19640519640519640519640519640}\rbrace\))
    Create an alternate version of Croutonillion by stopping here. Call this number C15.
  1752. \(C15\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14}C15\)
  1753. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^C15^^^^^^^^^^^^^^^X)$)
  1754. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X)
  1755. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X)
  1756. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X)
  1757. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X)
  1758. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X)
  1759. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X)
  1760. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X)
  1761. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X)
  1762. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X)
  1763. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X)
  1764. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X)
  1765. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X)
  1766. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X)
  1767. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14]}(X^X)
  1768. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15]}(X^X)
  1769. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X)
  1770. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X)
  1771. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X)
  1772. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X)
  1773. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X)
  1774. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X)
  1775. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X)
  1776. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X)
  1777. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X)
  1778. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X)
  1779. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X)
  1780. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X)
  1781. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X)
  1782. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C14X]}(X^X)
  1783. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X ]}(X^X)
  1784. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX
  1785. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X
  1786. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X
  1787. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X
  1788. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X
  1789. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X
  1790. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X
  1791. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X
  1792. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X
  1793. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X
  1794. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X
  1795. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X
  1796. C13X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C13X
  1797. C14X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C14X
  1798. C15X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C15X
  1799. X^X+C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X+C15^X
  1800. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15]
  1801. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}10012345678909758492715364758699598473939893939
  1802. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321746352829282765454738388272
  1803. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890847635424242453546
  1804. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321848764647
  1805. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321234567890
  1806. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567890
  1807. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567899
  1808. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}32123456789098765432123456789098765432123456789
  1809. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}43212345678909876543211234567890987654432123345
  1810. Repeat step 1,1-2,1-2-3,....1-2-3-....-1-2-3-....1807-1808 for (X^X)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^((X^X)![9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times
  1811. Repeat step 1,1-2,1-2-3,....1-2-3-....-1808-1809,then to into reverse order from 1809,1809-1808,......1809-1808.....3-2-1 for (X^X)################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################((X^X)! [999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times
  1812. Repeat previous step (X^X)****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times
  1813. repeat previous step (X^X)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times
  1814. repeat previous step (X^X)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times
  1815. repeat previous step (X^X)&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#((X^X)! [99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999])times
  1816. Repeat step 1-1814 for Crouton(1) times
    1. Crouton(n) = Crouton(n, googoltriplex)
    2. Crouton(0, n) = n
    3. Crouton(1, n) = {n,n,n}
    4. Crouton(2, n) = BB({n,n,n})
    5. Crouton(3, n) = megafuga(booga(BB({n,n,n})))
    6. Crouton(4, n) = E(megafuga(booga(BB({n,n,n}))))#(10^27+1)
    • ...
  1817. Repeat step 1-1815 for Crouton(2) times
  1818. Repeat step 1-1816 for Crouton(3) times
  1819. Repeat step 1-1817 for Crouton(4) times
  1820. Repeat step 1-1818 for Crouton(5) times
  1821. Repeat step 1-1819 for Crouton(6) times
  1822. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1823. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1824. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1825. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1826. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1827. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1828. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1829. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1830. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1831. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1832. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1833. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1834. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1835. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1836. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1837. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1838. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1839. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1840. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1841. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1842. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1843. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1844. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1845. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1846. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1847. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1848. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1849. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1850. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1851. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1852. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1853. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1854. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1855. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1856. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1857. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1858. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1859. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1860. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1861. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1862. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1863. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1864. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1865. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1866. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998}\rbrace\))
  1867. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997}\rbrace\))
  1868. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996}\rbrace\))
  1869. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995}\rbrace\))
  1870. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999994}\rbrace\))
  1871. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993}\rbrace\))
  1872. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992}\rbrace\))
  1873. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991}\rbrace\))
  1874. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990}\rbrace\))
  1875. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999989}\rbrace\))
  1876. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999988}\rbrace\))
  1877. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987}\rbrace\))
  1878. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999986}\rbrace\))
  1879. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999985}\rbrace\))
  1880. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace\))
  1881. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983}\rbrace\))
  1882. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982}\rbrace\))
  1883. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999981}\rbrace\))
  1884. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999980}\rbrace\))
  1885. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999979}\rbrace\))
  1886. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999978}\rbrace\))
  1887. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999977}\rbrace\))
  1888. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999976}\rbrace\))
  1889. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975}\rbrace\))
  1890. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999974}\rbrace\))
  1891. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999973}\rbrace\))
  1892. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999972}\rbrace\))
  1893. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999971}\rbrace\))
  1894. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999970}\rbrace\))
  1895. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969}\rbrace\))
  1896. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999968}\rbrace\))
  1897. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999967}\rbrace\))
  1898. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999966}\rbrace\))
  1899. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999965}\rbrace\))
  1900. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999964}\rbrace\))
  1901. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999963}\rbrace\))
  1902. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999962}\rbrace\))
  1903. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999961}\rbrace\))
  1904. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999960}\rbrace\))
  1905. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999959}\rbrace\))
  1906. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999958}\rbrace\))
  1907. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999957}\rbrace\))
  1908. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999956}\rbrace\))
  1909. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999955}\rbrace\))
  1910. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999954}\rbrace\))
  1911. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999955}\rbrace\))
  1912. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999954}\rbrace\))
  1913. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999953}\rbrace\))
  1914. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952}\rbrace\))
  1915. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace\))
  1916. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999951}\rbrace\))
  1917. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999950}\rbrace\))
  1918. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999949}\rbrace\))
  1919. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948}\rbrace\))
  1920. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999947}\rbrace\))
  1921. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999946}\rbrace\))
  1922. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999945}\rbrace\))
  1923. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999944}\rbrace\))
  1924. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999943}\rbrace\))
  1925. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999942}\rbrace\))
  1926. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999941}\rbrace\))
  1927. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999940}\rbrace\))
  1928. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999939}\rbrace\))
  1929. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999938}\rbrace\))
  1930. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999937}\rbrace\))
  1931. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999936}\rbrace\))
  1932. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999935}\rbrace\))
  1933. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999934}\rbrace\))
  1934. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999933}\rbrace\))
  1935. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999932}\rbrace\))
  1936. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999931}\rbrace\))
  1937. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999930}\rbrace\))
  1938. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999929}\rbrace\))
  1939. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999928}\rbrace\))
  1940. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999927}\rbrace\))
  1941. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999926}\rbrace\))
  1942. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999925}\rbrace\))
  1943. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999924}\rbrace\))
  1944. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999923}\rbrace\))
  1945. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999922}\rbrace\))
  1946. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999921}\rbrace\))
  1947. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999920}\rbrace\))
  1948. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999919}\rbrace\))
  1949. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999918}\rbrace\))
  1950. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999917}\rbrace\))
  1951. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace\))
  1952. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999916}\rbrace\))
  1953. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999915}\rbrace\))
  1954. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999914}\rbrace\))
  1955. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999913}\rbrace\))
  1956. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999912}\rbrace\))
  1957. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999911}\rbrace\))
  1958. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999910}\rbrace\))
  1959. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999909}\rbrace\))
  1960. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999908}\rbrace\))
  1961. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999907}\rbrace\))
  1962. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999906}\rbrace\))
  1963. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999905}\rbrace\))
  1964. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999904}\rbrace\))
  1965. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999903}\rbrace\))
  1966. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999902}\rbrace\))
  1967. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999901}\rbrace\))
  1968. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999900}\rbrace\))
  1969. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace\))
  1970. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998}\rbrace\))
  1971. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997}\rbrace\))
  1972. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996}\rbrace\))
  1973. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995}\rbrace\))
  1974. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999994}\rbrace\))
  1975. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993}\rbrace\))
  1976. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992}\rbrace\))
  1977. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991}\rbrace\))
  1978. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990}\rbrace\))
  1979. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999989}\rbrace\))
  1980. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999988}\rbrace\))
  1981. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987}\rbrace\))
  1982. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999986}\rbrace\))
  1983. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999985}\rbrace\))
  1984. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace\))
  1985. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983}\rbrace\))
  1986. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982}\rbrace\))
  1987. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999981}\rbrace\))
  1988. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999980}\rbrace\))
  1989. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999979}\rbrace\))
  1990. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999978}\rbrace\))
  1991. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999977}\rbrace\))
  1992. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999976}\rbrace\))
  1993. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975}\rbrace\))
  1994. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999974}\rbrace\))
  1995. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999973}\rbrace\))
  1996. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999972}\rbrace\))
  1997. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999971}\rbrace\))
  1998. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999970}\rbrace\))
  1999. X^(\(\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969}\rbrace\))
    Create an alternate version of Croutonillion by stopping here. Call this number C16.
  2000. \(C16\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C15\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14}C15}C16\)
  2001. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^C15^^^^^^^^^^^^^^^C16^^^^^^^^^^^^^^^^X)$)
  2002. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X)
  2003. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X)
  2004. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X)
  2005. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X)
  2006. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X)
  2007. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X)
  2008. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X)
  2009. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X)
  2010. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X)
  2011. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X)
  2012. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X)
  2013. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X)
  2014. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X)
  2015. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14]}(X^X)
  2016. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,]}(X^X)
  2017. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16]}(X^X)
  2018. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X)
  2019. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X)
  2020. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X)
  2021. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X)
  2022. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X)
  2023. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X)
  2024. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X)
  2025. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X)
  2026. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X)
  2027. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X)
  2028. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X)
  2029. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X)
  2030. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X)
  2031. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C14X]}(X^X)
  2032. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X ]}(X^X)
  2033. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X,C16X ]}(X^X)
  2034. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX
  2035. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X
  2036. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X
  2037. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X
  2038. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X
  2039. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X
  2040. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X
  2041. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X
  2042. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X
  2043. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X
  2044. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X
  2045. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X
  2046. C13X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C13X
  2047. C14X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C14X
  2048. C15X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C15X
  2049. C16X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C16X
  2050. X^X+C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X+C15^X+C16^X
  2051. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16]
    Create an alternate version of Croutonillion by stopping here. Let's call this number C17
  2052. X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17
  2053. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(Repeat step 1-2051 9001 times)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17
  2054. Rayo(Rayo(Rayo(Rayo...(Rayo(X)))))...))), with X Number of (Rayo function) things.
  2055. X^N, where N is the number of pixels in this box (at ordinary zoom level):
  2056. {X,X,N}, where N is the number of pixels in this box (at ordinary zoom level):
  2057. X^N, where N is croutonillion in Andre Joyce's merology system, rounded to the nearest whole number
  2058. Repeat step 1-2057 (Rayo's number)![X] times
  2059. X&(Repeat step 1-2058 (Rayo's number)![X] times)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&... with (Repeat step 1-2058 (Rayo's number)![X] times) times that the (Repeat step 1-2058 (Rayo's number)![X] times)& repeats.
  2060. \(F_7(F_6(F_5(F_4(F_3(F_2(F_1(X)))))))\)
  2061. Repeat step 1,1-2,1-2-3,.....,1-....2060,go into reverse order 2060,2060-2059,......,2059-....2-1 \(F_7(F_6(F_5(F_4(F_3(F_2(F_1(X)))))))\))times
  2062. X+{[1(X+1)]![X^X]}$
  2063. Multillion*53^X+Rayo's number
  2064. Worm(X)+Hydra(X)+fφ(C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17)(X)
  2065. Repeat all previous prime-numbered steps in order (C2+C3+C5+C7+C11+C13+C17) times
  2066. Repeat all previous composite-numbered steps in order (C4+C6+C8+C9+C10+C12+C14+C15+C16) times
  2067. Repeat step 1 C1 times
  2068. f(g(sg(g(f(TREE(Rayo(17,438,957,203,458+X))))))), where f, g, and sg are defined in Billy-bob Mario's function to extend upon gigoombaverse
  2069. A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))
  2070. A(A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X)))),A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X)))))
  2071. Arx(Arx(Arx(X,X,X)))
  2072. X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(10^100))))))))))X
  2073. repeat step 1,1-2,1-2-3,....,1-2-....-2073,then go into reverse order repeat step 2073,2073-2072,....,2073-2072-...-2-1 for X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))X
  2074. Let ZZ(n) denote the value obtaineded from the above process with initial value n. Using the definitions given here, [ZZ,ZZ,10100,2](X+1).
  2075. (X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))$) in a poligon of (X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))$) sides
  2076. ((FOOT(X^^^^^^X))^^^(X^X+X^3))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
  2077. G(X) where G denotes Graham's function
  2078. X########################### ... (FOOT(Rayo(X)) pound signs) ######X##X#X#X
  2079. X + 1 (What?)
  2080. The smallest possible factorial number whose base-69 representation contains the digit '5' exactly ceil(X) times
  2081. Repeat steps 1-2081 X#X##X times
  2082. X!!!!!!!!! ... (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000 factorial signs)
  2083. Convert X to a base-2 integer and treat the result as a base-10 integer for the next step.
  2084. 10{9{8{7{6{X}5}4}3}2}1
  2085. D(X#X^X!) where D denotes Loader's function
  2086. X^^^^^^^^^(tan 89.999999999999999 degrees)
  2087. {X, 69, 420, 666, 911, 1337, X}
  2088. 2^3^^4^^^5^^^^6...X-1^^^^^^^...^^^^^^^X
  2089. {X, {X-1, {X-2, ... {2, 1}}} ... }}}
  2090. TREE(Rayo(FOOT(booga(megafuga(E100(#^^#)^(#^^#)^#X))))
  2091. N vv N+1 vvv N+2 vvvv ... vvvv X-1 vvvv...vvvv X, where N represents the number of yoctoseconds it takes light to travel X yoctometers and v's represents weak tetration, pentation, hexation, etc.
  2092. X + 1 (Again? What?)
  2093. lvl(floor(X), floor(X), floor(X)) where lvl() is defined at http://googology.wikia.com/wiki/User_blog:MilkyWay90/My_Level_Function#comm-50989
  2094. A(X, !) where A is the Ackermann function and F(anynumber, !) where F can be any two parameter function, is defined at http://googology.wikia.com/wiki/User_blog:MilkyWay90/Generalized_Factorial_Function.
  2095. 50000000000000000000000000000000000000000000000000000000 ^ 9804098480925098435834908534853089534098538593583593489045349 ^ X
  2096. 1+2*3^4^^5^^^6...^^^^X (following order of operations, so X-1^^^^...^^^^X should be computed first)
  2097. Repeat step 2097 1+2*3^4^^5^^^6...^^^^X times
  2098. -X
  2099. -X / log10(1/(-X))
  2100. X^0 + X^1 + X^2 + ... + X^(X - 1) + X^X
  2101. X^^^^0 + X^^^^0.0001 + X^^^^0.0002 + ... + X^^^^(X - 0.0001) + X^^^^X
  2102. 10 ^ (ceil(X){5{5{5{5{5}5}5}5}5}ceil(X))
  2103. Repeat all the steps with the starting X defined at step 2103 for a total of Rayo(FOOT(FOOT(X))) times
  2104. Define a new function XX(x, y), which repeats steps 1-2103 y times for x
  2105. XX(X, 2{3{4{5...{1,000}1,001}1,002...}2,001
  2106. XX(10^^^^^^^^^^10, {X, 2X, 3X})
  2107. X2X3X4X5X6X7X8X
  2108. lvl(The number of bits of information in the following sound:
    Globglogabgalab - Chop Suey
    , X, X)
  2109. Repeat all steps 1-2108 with the result of 2108 and then do (X!)^X!... X! times.
  2110. X^^^^^^X and repeat FOOT(X^X) times.
  2111. Add X+1 to X+2 to X+3 and repeat XXX times
  2112. FOOT(Rayo(TREE(Worm(Hydra(booga(megafuga(gar(fuga(G(BB(D(XX(X&2)))))))))))). Now, create an alternate version of Croutonillion by stopping here. Call this number C18.
  2113. X^C1^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17^C18
  2114. {X, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18}
  2115. X&C1&C2&C3&C4&C5&C6&C7&C8&C9&C10&C11&C12&C13&C14&C15&C16&C17&C18
  2116. Repeat steps 2113-2115 meameamealokkapoowa oompa times
  2117. {X, X /////...///// 2} (there are X forward slashes)
  2118. Repeat steps 1-2117 {[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑...} times. This pattern repeats {[(((((...(((((Sasquatch!)!)!)!)!)...!)!)!)!)!] times. There are a Sasquatch amount of arrows in each row and there are a Sasquatch amount of factorial's in each row.
  2119. Repeat steps 1-2118 (D(D(D(D(D(...(D(D(D(D(D(X)))))...)))) times with there is a Sasquatch![200?] amount of a D's. D is Loader's function.
  2120. Repeat steps 1-2119 Ξ(Ξ(Ξ(...(Ξ(Ξ(Ξ(SCG(SCG(SCG(...(SCG(SCG(SCG(Hydra(Hydra(Hydra(...(Hydra(Hydra(Hydra(booga(booga(booga(...(booga(booga(booga(Worm(Worm(Worm(...(Worm(Worm(Worm(D(D(D(...(D(D(D(Rayo(Rayo(Rayo(...(Rayo(Rayo(Rayo(Foot(Foot(Foot(...(Foot(Foot(Foot(TREE(TREE(TREE(...(TREE(TREE(TREE(gX?????...?????[X?,X?,X?,X?,X?,...,X?,X?,X?,X?,X?]Xg64*(D3166((100*)!),Tree(Sasquatch![200?])))))))))))))))))))))...))))))))))))))))))*)$$$$$...$$$$$ times. g64 is a mixed factorial and the g after the last Tree stands for Graham's function. It's following this rule on mixed factorials. D is Loader's function. There are a Ξ(200?) amount of Ξ's, SCG(200?) amount of SCG's, a booga(200?) amount of booga's, a Hydra(200?) amount of Hydra's Worm(200?) amount of Worm's, D200?(200?) amount of D's, a Rayo(200?) amount of Rayo's, a Foot200?(200?) amount of Foot's, a TREE(200?) amount of TREE's, a 200? amount of ?'s after gX, a 200? of X?'s, and a 200? amount of $'s.
  2121. Repeat steps 1-2120 starting with (X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)^X^(X!!!!!!!!!!)^(X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!), and then repeat those steps with that number, and repeat that X times.
  2122. X+1
  2123. (X↑↑↑↑↑...↑↑↑↑↑X)!!!!!...!!!!!. There are a Rayo's Number amount of up-arrows and a Loader's Number of factorial signs.
  2124. X + (sqrt3(sqrt(108)+10)-sqrt3(sqrt(108)-10)-(sqrt(2)^2)+(e^(pi*i)+4)*(((((6^2*10)+sqrt((5000*3)-600))/4!)*4)-log(1*10^11))-(sqrt(9)^2*23)+43,252,003,274,489,856,997+(1^2*3^(4-5-6+7-8+9))-((24*2^10*12!)^1*7!*3^6*(24!)^0/(4!)^0)-(((25^(1/2))^5+1)/3-(2^2+2)*(24/3-99^0))+(log(log(sqrt(sqrt(sqrt(sqrt(4)))), 4), sqrt(4)/4)-(9^2-sqrt(6400)-(sqrt(([(3*4*5*6)-310]/2))+((5!)/12)-(15)-sqrt(3)^2). This is the same answer as step 2123.
  2125. X-yillion
  2126. (The value of Clarkkkksonplex on January 1, X CE)!!!...X factorials...!!!
  2127. The smallest possible integer divisible by all of the integers from 1 to X (Cookie Fonster's Weak Factorial function)
  2128. trooga({1, 2, 3, ... , Rayo(X)})
  2129. X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ^^^^^^^^^^^^^^^^^ X
  2130. 8904904898430430230498423980409328423098408942340298432098340892834094089 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ X
  2131. A(0.0001, 0.0002, ..., X - 0.0001, X)
  2132. Repeat steps 1 - 2131.
  2133. {1, 2, 3, ..., A(X, X + 1)}
  2134. trooga(trooga(...(trooga(X))...) (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000^^^^1,234,567,890 trooga thingies)
  2135. Repeat all previous steps X times
  2136. Repeat all previous steps X times
  2137. Keep going, with X total instances of "repeat all previous steps X times".
  2138. Keep going, with X total instances of "repeat all previous steps X times".
  2139. Keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times""
  2140. Keep going, with X total instances of "keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times"""
  2141. This will continue for X times.
  2142. \(f_{\text{Limit of TON}}(X)\)

Croutonillion is 103X+3.

Community content is available under CC-BY-SA unless otherwise noted.