## FANDOM

10,421 Pages

Croutonillion is a groundbreakingly pointless googologism, consisting of a ridiculous sequence of totally arbitrary steps. It is constantly under construction, so please edit this page and add to it!

Croutonillion is the mother of all salad numbers — a gross parody of many new googologists' attempts to create large numbers, following the misguided philosophy that "if it's more complicated, it's bigger."

## Definition

"N" refers to the previous step number and "O(n)" refers to the output of step n <= N. "X" refers to the result of the previous operation. Start with googoltriplex.

1. X^^^...^^^X (X copies of ^)
2. BB(X)
3. megafuga(booga(X))
4. X-xennaplex
5. {X, X / 2}
6. (Rayo's number)X
7. BB(X) (repeat this step Y times, where Y is the value of Clarkkkkson on January 1, googolgong CE)
8. $$f_{\Gamma_0}(X)$$
9. giggol-X-plex
10. X!!!...!!! (nested factorials, meameamealokkapoowa oompa times)
11. gongulus-(2X + 1)-plex
12. TREE(TREE(TREE(...TREE(X)...))) (X nested functions)
13. ceil(Xpi)
14. {X, X | 2}
15. Ξ(X). Do this step Y times, where Y is computed with the following steps:
1. Set Y = 3.
2. Y{Y}(Y + 2)
3. falpha(Y) in FGH, where alpha is Goucher's ordinal
4. T(Y) (Torian)
5. Circle(Y) (Steinhaus-Moser notation). Do this googol times.
16. E10#^^#X (with X copies of #)
Let f(x) be the result when going through all the steps up and excluding 16-th. Go in reverse order, and start with X.
17. f(TREE(X))th apocalyptic number
18. fgoober bunch(x)
19. X@X@X@X@X@X@X (legiattic array of)
20. X^^^^^X
21. X^^^^^^X
22. X^^^^^^^X
23. X^^^^^^^^X
24. f(x)^^^...^^^f(x) (f(x) copies of ^)
25. SCG(TREE(SCG(TREE(SCG(f(x) + tritri) + supertet) + superpent) + superhex) + supersept) + Moser
26. Exploding Tree Function(X)
27. Rayo13(X)
Create an alternate version of Croutonillion by stopping here (do the 103X + 3). Call this alternate C.
28. ΣX(C)
29. X^^^^^^^^^^^^^X
30. XvvvvvvvvvvvvvX (down arrows)
31. X -> X -> X -> X -> X (chained arrows)
32. {X, X (1) 2}
33. X$(Pickover's superfactorial) 34. gag-X 35. Xsuper gongulus 36. {X & L}10,10 37. X! 38. H(H(...(X)...)) (X nested functions), repeat grangoldex times. 39. Same as step 15. 40. {10,100 //...// 2} (X /'s) 41. Repeat 1428571337 times for step 1 to step 40. 42. X{meameamealokkapoowa oompa}(101337) 43. {googolduplex,X,X} 44. greagol-X-threx, then gigangol-X-tetrex, then gorgegol-X-pentex, and so on googol times 45. E100#100...100#100#(X+1) (googol 100's) 46. X-illion 47. X&&...&&X (X &'s) 48. E100#^#X 49. googolduplexgoogolduplexX 50. YX, where Y is lynz at May 1 meameamealokkapoowa-arrowa A.D. 51. terrible tethrathoth-ex-terrible tethrathoth-...-ex-terrible tethrathoth (X terrible tethrathoth's) 52. Rayo(Rayo(X) + 3) 53. Ackermann(X, X) 54. BH(X) starting with a size-X chain of $$\Gamma_0$$s 55. Circle(Circle(X)) (Friedman's circle theorem, not SMN) 56. Length of the Goodstein sequence starting with X 57. X-illion-illion-illion-...-illion-illion-illion, faxul times 58. BOX_M~XX 59. X(Xth digit of pi + 1) 60. Arx(X,X,X,...,X,X,X) (with X X's) 61. $$f_{X}(X)$$, repeat X times 62. G(X) 63. E(Y)Y#^^...^^#^#Y (X ^'s), where Y is googolplex. 64. Repeat X times for step 1 to step 63. 65. Repeat X times for step 1 to step 64. 66. Repeat X times for step 1 to step 65. 67. Repeat X times for step 1 to step 66. 68. Repeat X times for step 1 to step 67. 69. Repeat X times for step 1 to step 68. 70. Repeat X times for step 1 to step 69. 71. Repeat X times for step 1 to step 70. 72. 10^^X 73. X^^10 74. X^^X 75. {L & L & L...L & L & L,X}X,X (X L's) 76. 75*75...75*75*X (X 75's) 77. Graham's Number*X*Y, where Y is Step 5. 78. Rayo(X) 79. SCG(SCG(SCG(SCG(X)+googol)+googolplex)+googolduplex) 80. TREE(TREE(TREE(TREE(X)+googol)+googolplex)+googolduplex) 81. Rayo(Rayo(Rayo(Rayo(X)+googol)+googolplex)+googolduplex) 82. Ξ(Ξ(Ξ(Ξ(X)+googol)+googolplex)+googolduplex) 83. Arx(Arx(Arx(Arx(X)+googol)+googolplex)+googolduplex) 84. BH(X) expect for hydra using TFB labels instead of omegas 85. Repeat steps 1-84 until number of repetitions gets OVER 9000 (i.e. 9001 times) 86. Repeat X times for step 85. 87. Repeat X times for step 86. 88. Repeat X times for step 87. 89. Repeat X times for step 88. 90. {X,X (X) X,X} 91. {X,X,X} & X 92. $$1000^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}$$ 93. E100#^#^#X 94. E100#^^#^#X 95. E100#^^^#^#X 96. E100#^^^^^^^^^^^^^^^^#^#X + X 97. E100#^^^^^#^#X 98. E100#^^^^^^#^#X 99. E100#^^^^^^^#^#X 100. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X 101. Arx(X,X,X,X) 102. Arx(X,X,X,X,X) 103. 1337133713371337...1337133713371337 (X 1337's) 104. X+1 105. X&&&...&&&X, with X copies of & 106. H(X), Chris Bird's H function 107. H(X), hyperfactorial 108. m1(X), fusible margin function 109. SCGX(X) 110. X -> X -> X -> X -> X 111. cg(X), Conway & Guy's function 112. C(X), Hurford's C function 113. Xi(X) 114. X!!!!! (nested factorial, not multi) or ((((X!)!)!)!)! 115. First Mersenne prime after X, if it exists. Otherwise it is the first number with abundance X. 116. X^^5 117. {10, 100, 1, 3, 3, 7, X} 118. {10, 100 (1337) X} 119. TREEX(X) (repeat this step humongulus times) 120. Rayo(X) (repeat this step humongulus + 1 times) 121. A(X, X) (Ackermann function; repeat this step humongulus + 2 times) 122. X^^^X (repeat this step humongulus + 3 times) 123. giggol-X-plex Create an alternate version of Croutonillion by stopping here. Call this number C2. 124. SCG(SCG(C2 + X) + X) + XC2 125. C*C2*X 126. X!X, Nested Factorial Notation. 127. X^^^C 128. {X,1337,100} 129. {9001,9001,C,X} 130. GX 131. Graham's Number^^^...^^^X (C ^'s) 132. goo-X-ol 133. X-oogol 134. X^^^^^^^^^^^^^^^^^^^^^^^^^^^X 135. 103(X+1), repeat 1000000 times. 136. 2(First prime after log2(X)) 137. X-ty-Xs (10X copies of X concatenated) 138. X$ (superfactorial, repeat 50 times)
139. Rayo(X)
140. X![X([X([X])X])X] in hyperfactorial array notation
141. {X&L,X}X,X Repeat this for meameamealokkapoowa oompa times. (Note: all Xs are Xs from croutonillion)
142. Repeat step 1 then step 1,2 then step 1,2,3.... then... step 1,2,...,141 for meameamealokkapoowa oompa-brecewah times.
143. X$$...$$$where there are X$$...$$$'s  where there are X$$...$$ $'s where there are X$$...$$$'s ... X$$...$$ (with X $'s), where there are X$$...$$ layers. All of this is Nested! Yes, is 2 (w/) just now. 144. X{X{X$$...$$$}X}X, with X $'s. 145. GGX NESTED GRAHAM!!! Looks like G expanded to 3. 146. Repeat step 1 to 145 for X times. Then do that X times. Then do that X times. Then do that X times. ... Then do that X times. Then do that X times. with X 'Then do that X times'. And, X is changing every step! 147. The number of steps in gijswijt's sequence needed to reach X. 148. Amount of terms in the harmonic series needed to reach X. 149. Define the whole process up to here as the function C(n). Then, define the fast-growing-crouton as follows: • $$C_0(n) = C(n)$$ • $$C_{\alpha+1}(n) = C^n_\alpha(C^n(n))$$, where $$C^n$$ denotes function iteration • $$C_\alpha(n) = C_{\alpha[n]}(n)$$ iff $$\alpha$$ is a limit ordinal • fundamental sequences are as normal • The value to carry on in the definition is $$C_{ψ_0(Ω_ω)}(X)$$ 150. X in a X-gon using Steinhaus-Moser notation 151. Repeat step the last step. X times. 152. G(G(...(X)...)) (G(G(...(X)...)) (...G(G(...(X)...)) (X G's)... G's) G's), X layers. 153. AX, let A0 = X and An = X!(A(n-1)). 154. Age of Jonathan Bowers in the year X^3 C.E. in Planck times. 155. X&&&&&X 156. return value of D(D(D(D(D(X))))) in loader.c 157. S(X), Chris Bird's S function. 158. S(S(...(3)...)), X S's 159. X+401 160. X$[U(X)] using dollar function and U function
161. FGH(6,[X2])
162. Repeat step 1 then step 1,2 then step 1,2,3.... then... step 1,2,...,161 for X times.
163. $$(X^100)^{100^X})^{100^{X^X}}$$
164. $$\lfloor(10 \uparrow e) \uparrow\uparrow X\rfloor$$
165. $$X \uparrow_{,_{(\uparrow\uparrow)\uparrow}\uparrow} X$$, using this.
166. $$X\[[X],_{X,\text{S}(X),\text{SCG}(X+\text{KAI U~})}]$$
167. $$\sum^{X}_{i=1}\Sigma(i)$$
168. X^4562645464355123322146346142342456
169. $$\sum^{X}_{j=1}\sum^{j}_{i=1}\Sigma(i)$$
170. Repeat the steps 1 to 169 Rayo(X) times.
171. X![[<1(X)2>1]]
172. 10*1010, let create a function:
1. n*1m = n+m
2. n*lm = Xm
3. X1 = X
4. XY+1 = n*l-1n...n*l-1n (XY n's)
173. Gen(X, X, X, ..., X) with X X's using this
174. X^X
175. X^^X
176. X^^^X
177. X^^^^^^^^^^^^^^^^^^^X
178. X{X}X
179. X{{...{{X}}...}}X with X pairs of curly braces
180. X+1647265547748373872928297383749739473947498598696869983298287329838631983917319821972197281729712891279182972917
181. X*2762762746863717391681379173817391781739173917391791839183971308391830813918301837919389183981983719391739189779
182. {X,X[X/2]X} using BAN
183. $$X^{X+1}$$
184. $$f_{\varepsilon_X+1}(X)$$
185. $$Rayo^{Rayo(X)}(Rayo(X))$$
186. Repeat step 1, then step 1 and 2, then step 1,2 and 3 until 1,2,3,....,183,184,185 for $$\Xi^{\Xi(X)}(\Sigma_X(X))^{\text{Fish number 7}}\[[0]_2]$$bracewah times
187. $$F_6^{63}(X)$$ (see Fish number 6)
188. X![X]![X]![X]!........[X]![X]![X] with X![X] quantity of [X]!
189. $$\Xi^{\Xi(X)}(\Sigma_{X-5}(X))^{\text{Fish number 4}}\[[25134252432]_X]$$bracewah
190. XCC2
Create an alternate version of Croutonillion by stopping here. Call this number C3.
191. C3![C2![C![X]]]
192. Repeat step 191 X^^2 times
193. Repeat step 192 X^^3 times
194. Repeat step 193 X^^4 times
195. Repeat step 194 X^^5 times
196. Repeat step 195 X^^6 times
197. Repeat step 196 X^^7 times
198. Repeat step 197 X^^8 times
199. Repeat step 198 X^^9 times
200. Repeat step 199 X^^10 times
201. X![1,2,3,4...........X-2,X-1,X]
202. X$into X$-gons
203. repeat step 1 to 202 for Xgrand Sprach Zarathustra times
204. XX&X using BEAF
205. $$X\rightarrow X\rightarrow X\rightarrow X$$
206. $$E[X]X\#\#X$$
207. $$E[X]X\#\uparrow^X\#X$$
208. $$E[X]X\#\uparrow^{\#\uparrow^{\#}\#}\#X$$
209. $$X \rightarrow X \rightarrow X \rightarrow X \rightarrow X$$ using Conway's chained arrow in hypermathmatics
210. $$X$$ inside a $$2X$$-sided polygon
211. $$\Sigma(X)$$
212. $$Rayo^X(X)$$
213. $$X+1$$
214. $$X\times2$$
215. $$X\uparrow X$$
216. $$X\uparrow^{X}X$$
217. $$X\rightarrow X = X \uparrow_{1}\uparrow X$$ using this
218. $$\{X, X[1\backslash1\backslash2]X\}$$
219. Repeat steps 1 to 218
220. Repeat steps 1 to 219
221. Repeat steps 1 to 220
222. Repeat steps 1 to 221
Create an alternate version of Croutonillion by stopping here. Call this number C4.
223. $$C4\uparrow^{C3\uparrow^{C2\uparrow^{C}C2}C3}C4$$
224. $$C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4$$
225. Aarexhydra(x)
226. X + C4
227. X + C3
228. X + C2
229. X + C
230. 10879813718738138739183827393782839273923391838173018382739284837408482740294827402849284028492849284928492849749^X
231. X{34}
232. $$f_\omega(X)$$
233. $$f_{\Gamma_0}(X)$$
234. $$f_{\theta(\Omega^\omega)}(X)$$
235. $$f_{\theta(\Omega^\Omega)}(X)$$
236. $$f_{\theta(\varepsilon_{\Omega+1})}(X)$$
237. $$f_{\theta(\theta_1(\omega))}(X)$$
238. $$f_{\theta(\theta_1(\Omega))}(X)$$
239. $$f_{\theta(\theta_1(\Omega_2))}(X)$$
240. $$f_{\theta(\theta_I(0))}(X)$$
241. $$f_{\theta(\theta_M(0))}(X)$$
242. $$f_{\theta(\theta_K(0))}(X)$$
Create an alternate version of Croutonillion by stopping here. Call this number C5.
243. $$\text{Grand Sprach Zarathustra}^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}$$
244. BB(X)
245. X-xennaplex
246. (Rayo's number)^X
247. Repeat all steps 1-246 for X![X] times
Create an alternate version of Croutonillion by stopping here. Call this number C6.
248. X + C6
249. X + C5
250. X + C4
251. X + C3
252. X + C2
253. X + C
254. 1983875725766252877538279838723882837298328732983928392839229173918391739188173018387134829874082374@2387408137409^X
255. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
256. $$f_\omega(X)$$
257. $$f_{\Gamma_0}(X)$$
258. $$f_{\theta(\Omega^\omega)}(X)$$
259. $$f_{\theta(\Omega^\Omega)}(X)$$
260. $$f_{\theta(\varepsilon_{\Omega+1})}(X)$$
261. $$f_{\theta(\theta_1(\omega))}(X)$$
262. $$f_{\theta(\theta_1(\Omega))}(X)$$
263. $$f_{\theta(\theta_1(\Omega_2))}(X)$$
264. $$f_{\theta(\theta_I(0))}(X)$$
265. $$f_{\theta(\theta_M(0))}(X)$$
266. $$f_{\theta(\theta_K(0))}(X)$$
267. repeat step 1, step1-2, step 1-2-3,........, step 1-2-3-......266 for $$[(X\)!(X\)]![(X\)!(X\)]\$$ times.
268. Go into reverse order until step 1 (the first step of the entire list) then repeat this process (step 1 to 267, go reverse from step 267 to step 1) $$[(X\)!(X\)]![(X\)!(X\)]\$$ times.
269. $$X\text{%}$$, Warp Notation
270. $$X\text{%}\text{%}$$
271. $$X\text{%}_2$$
272. $$X\text{%}_{\text{%}}$$
273. $$X(1)$$
274. $$X(1)_{(1)}$$
275. $$X(2)$$
276. $$X((1))$$
277. $$X(0_1)$$
278. $$X(0_{0_1})$$
279. $$X(0 \rightarrow 1)$$
280. $$X(0 \rightarrow_2 1)$$
281. $$X(0 \rightarrow_{0_1} 1)$$
282. $$X(0 \rightarrow_{0 \rightarrow 1} 1)$$
283. $$X(0 (1)\rightarrow 1)$$
284. $$X(0 (0 \rightarrow 1)\rightarrow 1)$$
285. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
286. $$R_0(X)$$
1. $$R_0(X)=Rayo(X)$$
2. $$R_{\alpha+1}(X)=R_\alpha^X(X)$$
3. $$R_\alpha(X)=R_{\alpha[X]}(X)$$ if $$\alpha$$ is a limit ordinal
287. $$R_\omega(X)$$
288. $$R_{\varepsilon_0}(X)$$
289. $$R_{\Gamma_0}(X)$$
290. $$R_{\theta(\theta_I(0))}(X)$$
291. $$R_{\theta(\theta_M(0))}(X)$$
292. $$R_{\theta(\theta_K(0))}(X)$$
293. Repeat steps 1 to 292 {C, C2, [C3] C4, C4 [C5[C5]C5] C6, C6, C6} times (using BAN)
294. $$f_{C(\Omega^X)}(10^{100})$$
295. Repeat step 294 {X,X[C[C2[C3[X]C4]C5]C6]2} times (using Aarex's Array Notation)
296. Repeat same step above X^X times.
297. Repeat same step above X^^X times.
298. Repeat same step above X^^^^X times.
299. Repeat same step above X^^^^^^^^X times.
300. Repeat same step above X^^^^^^^^^^^^^^^^X times.
301. Repeat same step above X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X times.
302. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
303. {X, X, X, X, 1, 2, 6, 6, 5}
304. X -> X -> X
305. BBX(X)
306. {X,X...X,X}/w {C,C...C,C}/w {C2,C2...C2,C2}/w {C3,C3...C3,C3}/w {C4,C4...C4,C4}/w {C5,C5...C5,C5}/w C6 entries entries entries entries entries # E100{#,#(1)2}X
307. E100{#,#,1,1,2}X
308. E100{#,#,1,#}X
309. E100{#,#,1,3}X
310. E100{#,#,#,2}X
311. E100{#,{#,#,1,2},1,2}X
312. E100{#,#+2,1,2}X
313. E100#*(#*^#)#X
314. E100#**^#X
315. E100#*^#X
316. E100&(&(#))X
317. E100&(#)X
318. E100&(1)X
319. E100{#,#,1,2}X
320. E100#^^^#X
321. E100#^^#^^#X
322. E100#^^##X
323. E100#^^#>#^^#X
324. E100#^^#>#X
325. E100#^^#X
326. E100#^#^#X
327. E100#^##X
328. E100#^#X
329. E100##X
330. E100#X
331. 10^100-illion-illion-...-illion-illion/w X -illion's
332. Sigma^^...^^X(X)/w X ^'s
1. f^^X(X) = f^f...f^f(X)(X)...(X)(X)/w X nested
2. f^^^X(X) = f^^f...f^^f(X)(X)...(X)(X)/w X nested
333. Rayo^^...^^(X)/w X ^'s
334. Repeat step 306 X times
335. XAB, where A is the number of bits with value 1 on the wikitext source (in UTF-8) of revision 589365846 of the Wikipedia article "Crouton" and B is the number of cats in Mew-Genics
336. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X!!!!!!!!!!!!!!!!!!!!!!!!!!!!111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
337. X@X (BEAF)
338. Rayo(Rayo(X))^^X
339. X^2089787328737273867287387238274927492472983287492749284827429749284928492740284928492849284028492849284927492849
340. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}10012345678909758492715364758699598473939893939
341. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321746352829282765454738388272
342. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890847635424242453546
343. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321848764647
344. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321234567890
345. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567890
346. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567899
347. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}32123456789098765432123456789098765432123456789
348. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}43212345678909876543211234567890987654432123345
349. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^11234567890987654321234567890987654321234567890987654321234567890
350. X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^x^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X
351. BB(X)
352. BB2(X)
353. X-ex-grand godgahlahgong
354. X-ex-horrendous godsgodgulus
355. {X,X,X,X,X} & 123456789
356. repeat step 1-355 for X![C,C2,C3,C4,C5,C6] times
357. repeat step 1-356 for X![C,C3,C4,C5,C6,C2] times
358. repeat step 1-357 for X![C,C4,C5,C6,C2,C3] times
359. repeat step 1-358 for X![C,C5,C6,C2,C3,C4] times
360. repeat step 1-359 for X![C,C6,C2,C3,C4,C5] times
361. repeat step 1-360 for X![C2,C3,C4,C5,C6,C] times
362. repeat step 1-361 for X![C2,C4,C5,C6,C,C3] times
363. repeat step 1-362 for X![C2,C5,C6,C,C3,C4] times
364. repeat step 1-363 for X![C2,C6,C,C3,C4,C5] times
365. repeat step 1-364 for X![C2,C,C3,C4,C5,C6] times
366. repeat step 1-365 for X![C3,C4,C5,C6,C,C2] times
367. repeat step 1-366 for X![C3,C5,C6,C,C2,C4] times
368. repeat step 1-367 for X![C3,C6,C,C2,C4,C5] times
369. repeat step 1-368 for X![C3,C,C2,C4,C5,C6] times
370. repeat step 1-369 for X![C3,C2,C4,C5,C6,C] times
371. repeat step 1-370 for X![C4,C5,C6,C,C2,C3] times
372. repeat step 1-371 for X![C4,C6,C,C2,C3,C5] times
373. repeat step 1-372 for X![C4,C,C2,C3,C5,C6] times
374. repeat step 1-373 for X![C4,C2,C3,C5,C6,C] times
375. repeat step 1-374 for X![C4,C3,C5,C6,C,C2] times
376. repeat step 1-375 for X![C5,C6,C,C2,C3,C4] times
377. repeat step 1-376 for X![C5,C,C2,C3,C4,C6] times
378. repeat step 1-377 for X![C5,C2,C3,C4,C6,C] times
379. repeat step 1-378 for X![C5,C3,C4,C6,C,C2] times
380. repeat step 1-379 for X![C5,C4,C6,C,C2,C3] times
381. repeat step 1-380 for X![C6,C,C2,C3,C4,C5] times
382. repeat step 1-381 for X![C6,C2,C3,C4,C5,C] times
383. repeat step 1-382 for X![C6,C3,C4,C5,C,C2] times
384. repeat step 1-383 for X![C6,C4,C5,C,C2,C3] times
385. repeat step 1-384 for X![C6,C5,C,C2,C3,C4] times
Create an alternate version of Croutonillion by stopping here. Call this number C7.
386. C7{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7
387. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C7]}X
388. X^C7^C6^C5^C4^C3^C2^C
389. ((((((((((((X$)$)$)$)$.........$)$)$) with X$copies of$
390. X^^X^^^^^^^^^^^^^^^^^^^^^^^^^^X
391. X^138247384917534214561579428652481278542422422401650237490245107250015481802424042051424340805022642408080461051604040609887376465363737378378388318923787329472983297391379138913891739183917301839182918391839810189189380830189812981309
392. X&&&&&&.......&&&&&&&&&X with {(3)3[ω^(1+1)+ω^(1+1)+ω^(1)+ω^(1)+1+1]} copy of &
393. repeat step 1-368 then go reverse from step 368-1 ,repeat X*E100{#&#&#&#&#&#&#&#&#&#& ... &#&#&#&#&#&#&#&#&#&#}100w/grand Sprach Zarathustra #s
394. Repeat step 393
395. Repeat step 393 then 394
396. Repeat step 393, 394, then 395
397. X-th item of Gugold series
398. X-th item of Throogol series
399. X-th item of Godgahlah series
400. X-th item of Tethrathoth series
401. Repeat step 1-400 X times.
402. X + C
403. X + C2
404. X + C3
405. X + C4
406. X + C5
407. X + C6
408. X + C7
409. X + (C+C2)
410. X + (C+C3)
411. X + (C+C4)
412. X + (C+C5)
413. X + (C+C6)
414. X + (C+C7)
415. X + (C+C2+C3)
416. X + (C+C2+C4)
417. X + (C+C2+C5)
418. X + (C+C2+C6)
419. X + (C+C2+C7)
420. X + (C+C2+C3+C4)
421. X + (C+C2+C3+C5)
422. X + (C+C2+C3+C6)
423. X + (C+C2+C3+C7)
424. X + (C+C2+C3+C4+C5)
425. X + (C+C2+C3+C4+C6)
426. X + (C+C2+C3+C4+C7)
427. X + (C+C2+C3+C4+C5+C6)
428. X + (C+C2+C3+C4+C5+C7)
429. X + (C+C2+C3+C4+C5+C6+C7)
430. X * C
431. X * C2
432. X * C3
433. X * C4
434. X * C5
435. X * C6
436. X * C7
437. X * (C*C2)
438. X * (C*C3)
439. X * (C*C4)
440. X * (C*C5)
441. X * (C*C6)
442. X * (C*C7)
443. X * (C*C2*C3)
444. X * (C*C2*C4)
445. X * (C*C2*C5)
446. X * (C*C2*C6)
447. X * (C*C2*C7)
448. X * (C*C2*C3*C4)
449. X * (C*C2*C3*C5)
450. X * (C*C2*C3*C6)
451. X * (C*C2*C3*C7)
452. X * (C*C2*C3*C4*C5)
453. X * (C*C2*C3*C4*C6)
454. X * (C*C2*C3*C4*C7)
455. X * (C*C2*C3*C4*C5*C6)
456. X * (C*C2*C3*C4*C5*C7)
457. X * (C*C2*C3*C4*C5*C6*C7)
458. X^C
459. X^C2
460. X^C3
461. X^C4
462. X^C5
463. X^C6
464. X^C7
465. X^(C+C2)
466. X^(C+C3)
467. X^(C+C4)
468. X^(C+C5)
469. X^(C+C6)
470. X^(C+C7)
471. X^(C+C2+C3)
472. X^(C+C2+C4)
473. X^(C+C2+C5)
474. X^(C+C2+C6)
475. X^(C+C2+C7)
476. X^(C+C2+C3+C4)
477. X^(C+C2+C3+C5)
478. X^(C+C2+C3+C6)
479. X^(C+C2+C3+C7)
480. X^(C+C2+C3+C4+C5)
481. X^(C+C2+C3+C4+C6)
482. X^(C+C2+C3+C4+C7)
483. X^(C+C2+C3+C4+C5+C6)
484. X^(C+C2+C3+C4+C5+C7)
485. X^(C+C2+C3+C4+C5+C6+C7)
486. X^(C*C)
487. X^(C*C2)
488. X^(C*C3)
489. X^(C*C4)
490. X^(C*C5)
491. X^(C*C6)
492. X^(C*C7)
493. X^(C*C2*C3)
494. X^(C*C2*C4)
495. X^(C*C2*C5)
496. X^(C*C2*C6)
497. X^(C*C2*C7)
498. X^(C*C2*C3*C4)
499. X^(C*C2*C3*C5)
500. X^(C*C2*C3*C6)
501. X^(C*C2*C3*C7)
502. X^(C*C2*C3*C4*C5)
503. X^(C*C2*C3*C4*C6)
504. X^(C*C2*C3*C4*C7)
505. X^(C*C2*C3*C4*C5*C6)
506. X^(C*C2*C3*C4*C5*C7)
507. X^(C*C2*C3*C4*C5*C6*C7)
508. X^(C^C)
509. X^(C^C2)
510. X^(C^C3)
511. X^(C^C4)
512. X^(C^C5)
513. X^(C^C6)
514. X^(C^C7)
515. X^(C^C2^C3)
516. X^(C^C2^C4)
517. X^(C^C2^C5)
518. X^(C^C2^C6)
519. X^(C^C2^C7)
520. X^(C^C2^C3^C4)
521. X^(C^C2^C3^C5)
522. X^(C^C2^C3^C6)
523. X^(C^C2^C3^C7)
524. X^(C^C2^C3^C4^C5)
525. X^(C^C2^C3^C4^C6)
526. X^(C^C2^C3^C4^C7)
527. X^(C^C2^C3^C4^C5^C6)
528. X^(C^C2^C3^C4^C5^C7)
529. X^(C^C2^C3^C4^C5^C6^C7)
Create an alternate version of Croutonillion by stopping here. Call this number C8.
530. X![C,C2,C3,C4,C5,C6,C7,C8]
531. repeat step 1 to 355 X^^^^^^^^^^(X Times ^)^^^^^^^^^^^^^X
532. repeat step 356 to 531 X^^^^^^^^^^(X Times ^)^^^^^^^^^^^^^X
533. repeat step 1 to 532, go reverse from 532 to 1, all for X^C8^C7^C6^C5^C4^C3^C2^C times
534. repeat steps 100 to 200
535. repeat steps 200 to 100
536. Do the following steps in order: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, ... according to the ruler sequence, up to step 535.
537. X&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&X
538. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
539. [(X&&&&&&&&&&X)^(X&&&&&&&&&X)]^[(Fish number 7)#$$\text{googolplex} \downarrow\downarrow \text{googolplex}$$]
540. X-acthul-x-on (example: 7-acthul-9-on would be heptacthulennon)
541. {X,X\\\\.....\\\\\X} with {X,X\\\\.....\\\\\X} with {X,X\\\\.....\\\\\X}...[continue X times]... with {X,X\\\\.....\\\\\X} with X^^^X \s
542. E100#****.....*****^^^^^.....^^^^^###.......######100,000,000,000 with X *s, X ^s, and X #s
543. X-icahlah
544. X-ongulus
545. X![XX]
546. X-ee-x-ol
547. X-th prime
548. First odd composite number after X
549. Repeat step 529 and 530 googolplex{{...{{googolplex}}...}}googolplex times (X {}'s)
550. $$f_{X}(X)$$
Create an alternate version of Croutonillion by stopping here. Call this number C9.
551. C^C2^^C3^^^C4^^^^C5^^^^^C6^^^^^^C7^^^^^^^C8^^^^^^^^C9^^^^^^^^^X
552. C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9l
553. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9] 554. Repeat step 1, 1-2, 1-2-3, 1-2-3-4,........, 1-2-3-......-552, 1-2-3......-553, then go in reverse order: step 553, 553-552, 553-552-551,......, 553-552-551-........-3-2-1 for X![X,X,X......(X copies of Xs).....X,X,X] times 555. $$X^{X^{SCG^{SCG^{SCG^{SCG^{SCG^X(X)}(X)}(X)}(X)}(X)}}$$ 556. $$X\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C}C2}C3}C4}C5}C6}C7}C8}C9}X$$ 557. f^{f^^{f^^^{X}(X)}(X)}(X), where f(n) = n+1. 558. X{X{X{X}X}X}X 559. X^X^X^X^X^X^X 560. X*X*X*X*X*X*X 561. X+X+X+X+X+X+X 562. E100#*{#,#,1,2}#X 563. X ↑X ↑...X ↑X ↑X X X... X X w/ the amount of Xs being X on each side 564. (X^GRAND SPRACH ZARATHUSTRA)#***...***^^^...^^^###...###(X^GRAND SPRACH ZARATHUSTRA) with X *s, X ^s, and X #s 565. (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)^E100%100#2)![(grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s),.....((grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s) times (grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)elements.....,(grand grand grand grand transmorgrifihgh = E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)] 566. Repeat previous step X Times 567. Repeat previous step X^X Times 568. Repeat previous step X^X^X Times 569. Repeat previous step X^X Times 570. Repeat previous step X Times 571. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}X 572. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}X 573. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}X 574. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}X 575. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}X 576. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}X 577. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}X 578. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}X 579. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}X 580. repeat step 1-579 X Times 581. repeat step 1-580 X Times 582. repeat step 1-581 X Times 583. repeat step 1-582 X Times 584. repeat step 1-583 X Times 585. repeat step 1-584 X Times 586. repeat step 1-585 X Times 587. repeat step 1-586 X Times 588. repeat step 1-587 X Times 589. repeat step 1-588 X Times 590. repeat step 1-589 X Times 591. repeat step 1-590 X Times 592. $$\Xi^{\Xi(X)}(\Sigma_{X-1}(X))^{\text{Fish number 7}}\[[9876543210123456789]_X]$$bracewah 593. repeat step 1-592 then 592-1 for X%X#X 594. X times e100{#,#(0,1)2}100 according to http://googology.wikia.com/wiki/User:Wythagoras/Extended_Cascading-E_Notation Create an alternate version of Croutonillion by stopping here. Call this number C10. 595. 2048{X}C{X}C2{X}C3{X}C4{X}C5{X}C6{X}C7{X}C8{X}C9{X} 596. C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X 597. X-ex-terrible tethrathoth 598. 5^17^257^65537^X 599. X(0->0->11) on Warp Notation 600. X(0[2]1) 601. X(0(X+1)->{X+1})X = X(0(X)->{0(X)->{...0(X)->{0(X)->{1}(X+1)->{X}}{1}( X+1)->{X}...}{1}(X+1)->{X}}{1}(X+1)->{X})/w X nested 602. {X(0(X+1)->{X+1})X}***...***^^^...^^^###...###\\\...\\\///...///{X(0(X+1)->{X+1})X} with {X(0(X+1)->{X+1})X} *'s and ^'s and #'s and \'s and /'s 603. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 568-569 604. {X(0->0->0->1X+1)X}{#&#&#&...{X(0->0->0->1X+1)X} Times #& ...&#&#&#&#}{X(0->0->0->1X+1)X} 605. Repeat step 100, 200, 300, 400,500 and 600 X times 606. X$[[0(0,0/0...0/11)1]]/w X 0's
607. E100{#,#(1)2}X
608. E100{#,#,1,1,2}X
609. E100{#,#,1,#}X
610. E100{#,#,1,3}X
611. E100{#,#,#,2}X
612. E100{#,{#,#,1,2},1,2}X
613. E100{#,#+2,1,2}X
614. E100#*(#*^#)#X
615. E100#**^#X
616. E100#*^#X
617. E100&(&(#))X
618. E100&(#)X
619. E100&(1)Xp
620. E100{#,#,1,2}X
621. E100#^^^#X
622. E100#^^#^^#X
623. E100#^^##X
624. E100#^^#>#^^#X
625. E100#^^#>#X
626. E100#^^#X
627. E100#^#^#X
628. E100#^##X
629. E100#^#X
630. E100##X
631. E100#X
632. EX
633. X*27138617371381631973286329738239273827392739273891839813983928392839283028302830283082302930293029302930930909320!
Create an alternate version of Croutonillion by stopping here. Call this number C11.
634. X#783783772638237873927382739273927387329738273927392839273982398239273928392830283928392839283923928323928392839889
635. X+Finaloogol
636. X+C11
637. E100#^{1337}X
638. m1(X), normalized fusible margin function
639. TREEX(X)
640. EX###################################################################################X!
641. X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%81389283028993928302839932989287/8273873287382738273928392839283928398813982983928392839839283928392839283928392839283982392839823982398239283982398398239823928398989898989998999898988989
642. 2987654346374676438643868274286428732864286482748264827827382748724872487284728472874927429982482984X
643. {X,C11 [1[1][1]...[1][2]2] 2}/w C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X nested
644. EX {#,# [1[1][1]...[1][2]2] 2} C11/w C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X
645. X^^^^^^^^^B1, where B1 is the binary data of this image interpreted as an integer (Big-endian with the most significant bit first):
646. X^C1^B1^C2^C11
647. X(1 -> 3 -> 3 ->1337 7)
648. 203^431,112,937#^^^^########^^^^######>#^##(203^431,112,937#^^^^########^^^^######>#^#203,431,112,937#203,431,111,937)
649. 427886755455754365436553765486779887989664221244668€9&980987989798878687979797989798989798979786799887665536646464^X
650. 698376465757839939393948747484858588494849585958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
651. 420{420}X
652. {666,X(1)2}
653. {1337,1337(X,X)1337}
654. {9001,X/2}
655. {L(X),Graham's number}Graham's number, Graham's number
656. 100(100[X]100)
657. 10(100*X)
658. E(10^X)X#^^#G64
659. 10^^^^^X
660. X^^^^^10
661. X^^^^^X
662. C11+C+X
663. {X, B2, B2}, where B2 is the binary data of the raw wiki code of this page interpreted as an integer (MSB first)
664. repeat step 1-663 for X![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11] times
665. repeat step 1-664 for X![C,C3,C4,C5,C6,C7,C8,C9,C10,C11,C2] times
666. repeat step 1-665 for X![C,C4,C5,C6,C7,C8,C9,C10,C11,C2,C3] times
667. repeat step 1-666 for X![C,C5,C6,C7,C8,C9,C10,C11,C2,C3,C4] times
668. repeat step 1-667 for X![C,C6,C7,C8,C9,C10,C11,C2,C3,C4,C5] times
669. repeat step 1-668 for X![C,C7,C8,C9,C10,C11,C2,C3,C4,C5,C6] times
670. repeat step 1-669 for X![C,C8,C9,C10,C11,C2,C3,C4,C5,C6,C7] times
671. repeat step 1-670 for X![C,C9,C10,C11,C2,C3,C4,C5,C6,C7,C8] times
672. repeat step 1-671 for X![C,C10,C11,C2,C3,C4,C5,C6,C7,C8,C9] times
673. repeat step 1-672 for X![C,C11,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
674. repeat step 1-673 for X![C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C] times
675. repeat step 1-674 for X!]C2,C4,C5,C6,C7,C8,C9,C10,C11,C,C3] times
676. repeat step 1-675 for X![C2,C5,C6,C7,C8,C9,C10,C11,C,C3,C4] times
677. repeat step 1-676 for X![C2,C6,C7,C8,C9,C10,C11,C,C3,C4,C5] times
678. repeat step 1-677 for X![C2,C7,C8,C9,C10,C11,C,C3,C4,C5,C6] times
679. repeat step 1-678 for X![C2,C8,C9,C10,C11,C,C3,C4,C5,C6,C7] times
680. repeat step 1-679 for X![C2,C9,C10,C11,C,C3,C4,C5,C6,C7,C8] times
681. repeat step 1-680 for X![C2,C10,C11,C,C3,C4,C5,C6,C7,C8,C9] times
682. repeat step 1-681 for X![C2,C11,C,C3,C4,C5,C6,C7,C8,C9,C10] times
683. repeat step 1-682 for X![C3,C4,C5,C6,C7,C8,C9,C10,C11,C,C2] times
684. repeat step 1-683 for X![C3,C5,C6,C7,C8,C9,C10,C11,C,C2,C4] times
685. repeat step 1-684 for X![C3,C6,C7,C8,C9,C10,C11,C,C2,C4,C5] times
686. repeat step 1-685 for X![C3,C7,C8,C9,C10,C11,C,C2,C4,C5,C6] times
687. repeat step 1-686 for X![C3,C8,C9,C10,C11,C,C2,C4,C5,C6,C7] times
688. repeat step 1-687 for X![C3,C9,C10,C11,C,C2,C4,C5,C6,C7,C8] times
689. repeat step 1-688 for X![C3,C10,C11,C,C2,C4,C5,C6,C7,C8,C9] times
690. repeat step 1-689 for X![C3,C11,C,C2,C4,C5,C6,C7,C8,C9,C10] times
691. repeat step 1-690 for X![C4,C5,C6,C7,C8,C9,C10,C11,C,C2,C3] times
692. repeat step 1-691 for X![C4,C6,C7,C8,C9,C10,C11,C,C2,C3,C5] times
693. repeat step 1-692 for X![C4,C7,C8,C9,C10,C11,C,C2,C3,C5,C6] times
694. repeat step 1-693 for X![C4,C8,C9,C10,C11,C,C2,C3,C5,C6,C7] times
695. repeat step 1-694 for X![C4,C9,C10,C11,C,C2,C3,C5,C6,C7,C8] times
696. repeat step 1-695 for X![C4,C10,C11,C,C2,C3,C5,C6,C7,C8,C9] times
697. repeat step 1-696 for X![C4,C11,C,C2,C3,C5,C6,C7,C8,C9,C10] times
698. repeat step 1-697 for X![C5,C6,C7,C8,C9,C10,C11,C,C2,C3,C4] times
699. repeat step 1-698 for X![C5,C7,C8,C9,C10,C11,C,C2,C3,C4,C6] times
700. repeat step 1-699 for X![C5,C8,C9,C10,C11,C,C2,C3,C4,C6,C7] times
701. repeat step 1-700 for X![C5,C9,C10,C11,C,C2,C3,C4,C6,C7,C8] times
702. repeat step 1-701 for X![C5,C10,C11,C,C2,C3,C4,C6,C7,C8,C9] times
703. repeat step 1-702 for X![C5,C11,C,C2,C3,C4,C6,C7,C8,C9,C10] times
704. repeat step 1-703 for X![C6,C7,C8,C9,C10,C11,C,C2,C3,C4,C5] times
705. repeat step 1-704 for X![C6,C8,C9,C10,C11,C,C2,C3,C4,C5,C7] times
706. repeat step 1-705 for X![C6,C9,C10,C11,C,C2,C3,C4,C5,C7,C8] times
707. repeat step 1-706 for X![C6,C10,C11,C,C2,C3,C4,C5,C7,C8,C9] times
708. repeat step 1-707 for X![C6,C11,C,C2,C3,C4,C5,C7,C8,C9,C10] times
709. repeat step 1-708 for X![C7,C8,C9,C10,C11,C,C2,C3,C4,C5,C6] times
710. repeat step 1-709 for X![C7,C9,C10,C11,C,C2,C3,C4,C5,C6,C8] times
711. repeat step 1-710 for X![C7,C10,C11,C,C2,C3,C4,C5,C6,C8,C9] times
712. repeat step 1-711 for X![C7,C11,C,C2,C3,C4,C5,C6,C8,C9,C10] times
713. repeat step 1-712 for X![C8,C9,C10,C11,C,C2,C3,C4,C5,C6,C7] times
714. repeat step 1-713 for X![C8,C10,C11,C,C2,C3,C4,C5,C6,C7,C9] times
715. repeat step 1-714 for X![C8,C11,C,C2,C3,C4,C5,C6,C7,C9,C10] times
716. repeat step 1-715 for X![C9,C10,C11,C,C2,C3,C4,C5,C6,C7,C8] times
717. repeat step 1-716 for X![C9,C11,C,C2,C3,C4,C5,C6,C7,C8,C10] times
718. repeat step 1-717 for X![C10,C11,C,C2,C3,C4,C5,C6,C7,C8,C9] times
719. repeat step 1-718 for X![C11,C,C2,C3,C4,C5,C6,C7,C8,C9,C10] times
720. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]}
721. X + C
722. X + C2
723. X + C3
724. X + C4
725. X + C5
726. X + C6
727. X + C7
728. X + C8
729. X + C9
730. X + C10
731. X + C11
732. X + (C+C2)
733. X + (C+C3)
734. X + (C+C4)
735. X + (C+C5)
736. X + (C+C6)
737. X + (C+C7)
738. X + (C+C8)
739. X + (C+C9)
740. X + (C+C10)
741. X + (C+C11)
742. X + (C+C2+C3)
743. X + (C+C2+C4)
744. X + (C+C2+C5)
745. X + (C+C2+C6)
746. X + (C+C2+C7)
747. X + (C+C2+C8)
748. X + (C+C2+C9)
749. X + (C+C2+C10)
750. X + (C+C2+C11)
751. X + (C+C2+C3+C4)
752. X + (C+C2+C3+C5)
753. X + (C+C2+C3+C6)
754. X + (C+C2+C3+C7)
755. X + (C+C2+C3+C8)
756. X + (C+C2+C3+C9)
757. X + (C+C2+C3+C10)
758. X + (C+C2+C3+C11)
759. X + (C+C2+C3+C4+C5)
760. X + (C+C2+C3+C4+C6)
761. X + (C+C2+C3+C4+C7)
762. X + (C+C2+C3+C4+C8)
763. X + (C+C2+C3+C4+C9)
764. X + (C+C2+C3+C4+C10)
765. X + (C+C2+C3+C4+C11)
766. X + (C+C2+C3+C4+C5+C6)
767. X + (C+C2+C3+C4+C5+C7)
768. X + (C+C2+C3+C4+C5+C8)
769. X + (C+C2+C3+C4+C5+C9)
770. X + (C+C2+C3+C4+C5+C10)
771. X + (C+C2+C3+C4+C5+C11)
772. X + (C+C2+C3+C4+C5+C6+C7)
773. X + (C+C2+C3+C4+C5+C6+C8)
774. X + (C+C2+C3+C4+C5+C6+C9)
775. X + (C+C2+C3+C4+C5+C6+C10)
776. X + (C+C2+C3+C4+C5+C6+C11)
777. X + (C+C2+C3+C4+C5+C6+C7+C8)
778. X + (C+C2+C3+C4+C5+C6+C7+C9)
779. X + (C+C2+C3+C4+C5+C6+C7+C10)
780. X + (C+C2+C3+C4+C5+C6+C7+C11)
781. X + (C+C2+C3+C4+C5+C6+C7+C8+C9)
782. X + (C+C2+C3+C4+C5+C6+C7+C8+C10)
783. X + (C+C2+C3+C4+C5+C6+C7+C8+C11)
784. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C10)
785. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C11)
786. X + (C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)
787. X * C
788. X * C2
789. X * C3
790. X * C4
791. X * C5
792. X * C6
793. X * C7
794. X * C8
795. X * C9
796. X * C10
797. X * C11
798. X * (C*C2)
799. X * (C*C3)
800. X * (C*C4)
801. X * (C*C5)
802. X * (C*C6)
803. X * (C*C7)
804. X * (C*C8)
805. X * (C*C9)
806. X * (C*C10)
807. X * (C*C11)
808. X * (C*C2*C3)
809. X * (C*C2*C4)
810. X * (C*C2*C5)
811. X * (C*C2*C6)
812. X * (C*C2*C7)
813. X * (C*C2*C8)
814. X * (C*C2*C9)
815. X * (C*C2*C10)
816. X * (C*C2*C11)
817. X * (C*C2*C3*C4)
818. X * (C*C2*C3*C5)
819. X * (C*C2*C3*C6)
820. X * (C*C2*C3*C7)
821. X * (C*C2*C3*C8)
822. X * (C*C2*C3*C9)
823. X * (C*C2*C3*C10)
824. X * (C*C2*C3*C11)
825. X * (C*C2*C3*C4*C5)
826. X * (C*C2*C3*C4*C6)
827. X * (C*C2*C3*C4*C7)
828. X * (C*C2*C3*C4*C8)
829. X * (C*C2*C3*C4*C9)
830. X * (C*C2*C3*C4*C10)
831. X * (C*C2*C3*C4*C11)
832. X * (C*C2*C3*C4*C5*C6)
833. X * (C*C2*C3*C4*C5*C7)
834. X * (C*C2*C3*C4*C5*C8)
835. X * (C*C2*C3*C4*C5*C9)
836. X * (C*C2*C3*C4*C5*C10)
837. X * (C*C2*C3*C4*C5*C11)
838. X * (C*C2*C3*C4*C5*C6*C7)
839. X * (C*C2*C3*C4*C5*C6*C8)
840. X * (C*C2*C3*C4*C5*C6*C9)
841. X * (C*C2*C3*C4*C5*C6*C10)
842. X * (C*C2*C3*C4*C5*C6*C11)
843. X * (C*C2*C3*C4*C5*C6*C7*C8)
844. X * (C*C2*C3*C4*C5*C6*C7*C9)
845. X * (C*C2*C3*C4*C5*C6*C7*C10)
846. X * (C*C2*C3*C4*C5*C6*C7*C11)
847. X * (C*C2*C3*C4*C5*C6*C7*C8*C9)
848. X * (C*C2*C3*C4*C5*C6*C7*C8*C10)
849. X * (C*C2*C3*C4*C5*C6*C7*C8*C11)
850. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C10)
851. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C11)
852. X * (C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)
853. X^C
854. X^C2
855. X^C3
856. X^C4
857. X^C5
858. X^C6
859. X^C7
860. X^C8
861. X^C9
862. X^C10
863. X^C11
864. X^(C+C2)
865. X^(C+C3)
866. X^(C+C4)
867. X^(C+C5)
868. X^(C+C6)
869. X^(C+C7)
870. X^(C+C8)
871. X^(C+C9)
872. X^(C+C10)
873. X^(C+C11)
874. X^(C+C2+C3)
875. X^(C+C2+C4)
876. X^(C+C2+C5)
877. X^(C+C2+C6)
878. X^(C+C2+C7)
879. X^(C+C2+C8)
880. X^(C+C2+C9)
881. X^(C+C2+C10)
882. x^(C+C2+C11)
883. X^(C+C2+C3+C4)
884. X^(C+C2+C3+C5)
885. X^(C+C2+C3+C6)
886. X^(C+C2+C3+C7)
887. X^(C+C2+C3+C8)
888. X^(C+C2+C3+C9)
889. X^(C+C2+C3+C10)
890. X^(C+C2+C3+C11)
891. X^(C+C2+C3+C4+C5)
892. X^(C+C2+C3+C4+C6)
893. X^(C+C2+C3+C4+C7)
894. X^(C+C2+C3+C4+C8)
895. X^(C+C2+C3+C4+C9)
896. X^(C+C2+C3+C4+C10)
897. X^(C+C2+C3+C4+C11)
898. X^(C+C2+C3+C4+C5+C6)
899. X^(C+C2+C3+C4+C5+C7)
900. X^(C+C2+C3+C4+C5+C8)
901. X^(C+C2+C3+C4+C5+C9)
902. X^(C+C2+C3+C3+C5+C10)
903. X^(C+C2+C3+C4+C5+C11)
904. X^(C+C2+C3+C4+C5+C6+C7)
905. X^(C+C2+C3+C4+C5+C6+C8)
906. X^(C+C2+C3+C4+C5+C6+C9)
907. X^(C+C2+C3+C4+C5+C6+C10)
908. X^(C+C2+C3+C4+C5+C6+C11)
909. X^(C+C2+C3+C4+C5+C6+C7+C8)
910. X^(C+C2+C3+C4+C5+C6+C7+C9)
911. X^(C+C2+C3+C4+C5+C6+C7+C10)
912. X^(C+C2+C3+C4+C5+C6+C7+C11)
913. X^(C+C2+C3+C4+C5+C6+C7+C8+C9)
914. X^(C+C2+C3+C4+C5+C6+C7+C8+C10)
915. X^(C+C2+C3+C4+C5+C6+C7+C8+C11)
916. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C10)
917. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C11)
918. X^(C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)
919. X^(C*C)
920. X^(C*C2)
921. X^(C*C3)
922. X^(C*C4)
923. X^(C*C5)
924. X^(C*C6)
925. X^(C*C7)
926. X^(C*C8)
927. X^(C*C9)
928. X^(C*C10)
929. X^(C*C11)
930. X^(C*C2*C3)
931. X^(C*C2*C4)
932. X^(C*C2*C5)
933. X^(C*C2*C6)
934. X^(C*C2*C7)
935. X^(C*C2*C8)
936. X^(C*C2*C9)
937. X^(C*C2*C10)
938. X^(C*C2*C11)
939. X^(C*C2*C3*C4)
940. X^(C*C2*C3*C5)
941. X^(C*C2*C3*C6)
942. X^(C*C2*C3*C7)
943. X^(C*C2*C3*C8)
944. X^(C*C2*C3*C9)
945. X^(C*C2*C3*C10)
946. X^(C*C2*C3*C11)
947. X^(C*C2*C3*C4*C5)
948. X^(C*C2*C3*C4*C6)
949. X^(C*C2*C3*C4*C7)
950. X^(C*C2*C3*C4*C8)
951. X^(C*C2*C3*C4*C9)
952. X^(C*C2*C3*C4*C10)
953. X^(C*C2*C3*C4*C11)
954. X^(C*C2*C3*C4*C5*C6)
955. X^(C*C2*C3*C4*C5*C7)
956. X^(C*C2*C3*C4*C5*C8)
957. X^(C*C2*C3*C4*C5*C9)
958. X^(C*C2*C3*C4*C5*C10)
959. X^(C*C2*C3*C4*C5*C11)
960. X^(C*C2*C3*C4*C5*C6*C7)
961. X^(C*C2*C3*C4*C5*C6*C8)
962. X^(C*C2*C3*C4*C5*C6*C9)
963. X^(C*C2*C3*C4*C5*C6*C10)
964. X^(C*C2*C3*C4*C5*C6*C11)
965. X^(C*C2*C3*C4*C5*C6*C7*C8)
966. X^(C*C2*C3*C4*C5*C6*C7*C9)
967. X^(C*C2*C3*C4*C5*C6*C7*C10)
968. X^(C*C2*C3*C4*C5*C6*C7*C11)
969. X^(C*C2*C3*C4*C5*C6*C7*C8*C9)
970. X^(C*C2*C3*C4*C5*C6*C7*C8*C10)
971. X^(C*C2*C3*C4*C5*C6*C7*C8*C11)
972. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C10)
973. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C11)
974. X^(C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)
975. X^(C^C)
976. X^(C^C2)
977. X^(C^C3)
978. X^(C^C4)
979. X^(C^C5)
980. X^(C^C6)
981. X^(C^C7)
982. X^(C^C8)
983. X^(C^C9)
984. X^(C^C10)
985. X^(C^C11)
986. X^(C^C2^C3)
987. X^(C^C2^C4)
988. X^(C^C2^C5)
989. X^(C^C2^C6)
990. X^(C^C2^C7)
991. X^(C^C2^C8)
992. X^(C^C2^C9)
993. X^(C^C2^C10)
994. X^(C^C2^C11)
995. X^(C^C2^C3^C4)
996. X^(C^C2^C3^C5)
997. X^(C^C2^C3^C6)
998. X^(C^C2^C3^C7)
999. X^(C^C2^C3^C8)
1000. X^(C^C2^C3^C9)
1001. X^(C^C2^C3^C10)
1002. X^(C^C2^C3^C11)
1003. X^(C^C2^C3^C4^C5)
1004. X^(C^C2^C3^C4^C6)
1005. X^(C^C2^C3^C4^C7)
1006. X^(C^C2^C3^C4^C8)
1007. X^(C^C2^C3^C4^C9)
1008. X^(C^C2^C3^C4^C10)
1009. X^(C^C2^C3^C4^C11)
1010. X^(C^C2^C3^C4^C5^C6)
1011. X^(C^C2^C3^C4^C5^C7)
1012. X^(C^C2^C3^C4^C5^C8)
1013. X^(C^C2^C3^C4^C5^C9)
1014. X^(C^C2^C3^C4^C5^C10)
1015. X^(C^C2^C3^C4^C5^C11)
1016. X^(C^C2^C3^C4^C5^C6^C7)
1017. X^(C^C2^C3^C4^C5^C6^C8)
1018. X^(C^C2^C3^C4^C5^C6^C9)
1019. X^(C^C2^C3^C4^C5^C6^C10)
1020. X^(C^C2^C3^C4^C5^C6^C11)
1021. X^(C^C2^C3^C4^C5^C6^C7^C8)
1022. X^(C^C2^C3^C4^C5^C6^C7^C9)
1023. X^(C^C2^C3^C4^C5^C6^C7^C10)
1024. X^(C^C2^C3^C4^C5^C6^C7^C11)
1025. X^(C^C2^C3^C4^C5^C6^C7^C8^C9)
1026. X^(C^C2^C3^C4^C5^C6^C7^C8^C10)
1027. X^(C^C2^C3^C4^C5^C6^C7^C8^C11)
1028. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C10)
1029. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C11)
1030. X^(C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11)
Create an alternate version of Croutonillion by stopping here. Call this number C12.
1031. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}X
1032. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}X
1033. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}X
1034. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}X
1035. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}X
1036. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}X
1037. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}X
1038. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}X
1039. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}X
1040. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}X
1041. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}X
1042. X{(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}X
1043. 9876543210123456789{X}C{X}C2{X}C3{X}C4{X}C5{X}C6{X}C7{X}C8{X}C9{X}C10{X}C11{X}C12{X}
1044. C12^C11^C10^C9^C8^C7^C6^C5^C4^C3^C2^C^X
1045. X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12
1046. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 1,1-2,1-2-3,1-2-....-1043-1044,1-2-...-1044-1045
1047. {X(0(X+1)->{X+1})X}%%%%%....%%%%%{X(0(X+1)->{X+1})X} reply of step 1046,1046-1045,1046-1045-1044,.......,1046-1045-1044-....-3-2-1.
1048. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^B1
1049. X&&&X
1050. X!!!!!!!!!!!!!!!!!! (multifactorial)
1051. X!!!!!!!!!!!!!!!!!! (nested factorial)
1052.  !!!!!!!!!!!X (nested subfactorial)
1053. TREE(TREE(X))
1054. X^BB(Rayo(Xi(X)))
1055. X^(103*103*103*103*103*103*103*103000000+3)
1056. X^(E100#####100)
1057. X^{10,10 (100) 2}2
1058. X^{10,10 (100) 2}3
1059. X^{10,10 (100) 2}gongulus
1060. X^X + C12 - repeat this step [25*8+12/12]!^123 times
1061. X^(104)
1062. X^(685410196625)
1063. X^(745627189362583526)
1064. X^(314151617181912921222324252627)
1065. X^(103*103*1090+3+3)
1066. X^(103*103*1093+3+3)
1067. X^(101010100-1-1-1)
1068. X![{10,10 (100) 2}2]
1069. X![{10,10 (100) 2}3]
1070. X![{10,10 (100) 2}gongulus]
1071. (X#{10,10 (100) 2}2)#######......(X#{10,10 (100) 2}3 times #)......######(X#{10,10 (100) 2}gongulus)
1072. X^^^^^^^^(X^4)
1073. 1234218492548476396739648483215434254518184155243664758217545266434286615357616487456487665798786078789686188068779898515526023615566485866408897512853491356X
1074. X^^^^^^DRESSING27 (base 27 with A = 1, B = 2, etc.)
1075. X^^^^^^^^LETTUCE27 (same)
1076. {X, X (TOMATOES27) 2} (same)
1077. {X, X (CROUTONS27) 3} (same)
1078. {X, X, X, X, (0, DRESSING27) 5} (same)
1079. X![X,X,X,X,......X^(E100*(*(*( ... *(*(*(#))) ... )))100 w/grand grand grand transmorgrifihgh *'s)...,X,X,X,X)
1080. X%(616^666{{#,#,#,#,#,#}&#&#}666)
1081. repeat step 1,1-2,1-2-3,....,1-2-3-.....-1079-1080, go back in reverse order from 1080,1079-1078,1080-1079-1078,......,1080-1079-1078-........-3,2-1, repeat this process for {(X$)^{L&L...L&L100,10}10,10 (L L's)}!{X, X, X, X,.....((E100{#,#(1)2}44,435,622#2) copies of X...., X, X, X} times 1082. $$C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12$$ 1083. X^(CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X)$
1084. C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X
1085. FOOT(Rayo(TREE(SCG(11122121132312314221432141253412351246351234675375613+X^^^785614385768194371739678901467808950183467829)))))
1086. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12] 1087. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX 1088. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X 1089. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X 1090. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X 1091. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X 1092. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X 1093. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X 1094. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X 1095. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X 1096. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X 1097. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X 1098. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X 1099. E987654321234567890{#,#(1)2}X 1100. E987654321234567890{#,#,1,1,2}X 1101. E987654321234567890{#,#,1,#}X 1102. E987654321234567890{#,#,1,3}X 1103. E987654321234567890{#,#,#,2}X 1104. E987654321234567890{#,{#,#,1,2},1,2}X 1105. E987654321234567890{#,#+2,1,2}X 1106. E987654321234567890#*(#*^#)#X 1107. E987654321234567890#**^#X 1108. E987654321234567890#*^#X 1109. E987654321234567890&(&(#))X 1110. E987654321234567890&(#)X 1111. E987654321234567890&(1)X 1112. E987654321234567890{#,#,1,2}X 1113. E987654321234567890#^^^#X 1114. E987654321234567890#^^#^^#X 1115. E987654321234567890#^^##X 1116. E987654321234567890#^^#>#^^#X 1117. E987654321234567890#^^#>#X 1118. E987654321234567890#^^#X 1119. E987654321234567890#^#^#X 1120. E987654321234567890#^##X 1121. E987654321234567890#^#X 1122. E987654321234567890##X 1123. E987654321234567890#X Create an alternate version of Croutonillion by stopping here. Call this number C13 1124. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X) 1125. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X) 1126. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X) 1127. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X) 1128. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X) 1129. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X) 1130. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X) 1131. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X) 1132. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X) 1133. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X) 1134. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X) 1135. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X) 1136. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X) 1137. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X) 1138. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X) 1139. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X) 1140. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X) 1141. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X) 1142. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X) 1143. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X) 1144. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X) 1145. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X) 1146. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X) 1147. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X) 1148. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X) 1149. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X) 1150. repeat step 1-1148 for X![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13] times 1151. repeat step 1-1149 for X![C,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2] times 1152. repeat step 1-1150 for X![C,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3] times 1153. repeat step 1-1151 for X![C,C5,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4] times 1154. repeat step 1-1152 for X![C,C6,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5] times 1155. repeat step 1-1153 for X![C,C7,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6] times 1156. repeat step 1-1154 for X![C,C8,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7] times 1157. repeat step 1-1155 for X![C,C9,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8] times 1158. repeat step 1-1156 for X![C,C10,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8,C9] times 1159. repeat step 1-1157 for X![C,C11,C12,C13,C2,C3,C4,C5,C6,C7,C8,C9,C10] times 1160. repeat step 1-1158 for X![C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C] times 1161. repeat step 1-1159 for X![C2,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C3] times 1162. repeat step 1-1160 for X![C2,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C3,C4] times 1163. repeat step 1-1161 for X![C2,C6,C7,C8,C9,C10,C11,C12,C13,C,C3,C4,C5] times 1164. repeat step 1-1162 for X![C2,C7,C8,C9,C10,C11,C12,C13,C,C3,C4,C5,C6] times 1165. repeat step 1-1163 for X![C2,C8,C9,C10,C11,C12,C13,C,C3,C4,C5,C6,C7] times 1166. repeat step 1-1164 for X![C2,C9,C10,C11,C12,C13,C,C3,C4,C5,C6,C7,C8] times 1167. repeat step 1-1165 for X![C2,C10,C11,C12,C13,C,C3,C4,C5,C6,C7,C8,C9] times 1168. repeat step 1-1166 for X![C2,C11,C12,C13,C,C3,C4,C5,C6,C7,C8,C9,C10] times 1169. repeat step 1-1167 for X![C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2] times 1170. repeat step 1-1168 for X![C3,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C4] times 1171. repeat step 1-1169 for X![C3,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C4,C5] times 1172. repeat step 1-1170 for X![C3,C7,C8,C9,C10,C11,C12,C13,C,C2,C4,C5,C6] times 1173. repeat step 1-1171 for X![C3,C8,C9,C10,C11,C12,C13,C,C2,C4,C5,C6,C7] times 1174. repeat step 1-1172 for X![C3,C9,C10,C11,C12,C13,C,C2,C4,C5,C6,C7,C8] times 1175. repeat step 1-1173 for X![C3,C10,C11,C12,C13,C,C2,C4,C5,C6,C7,C8,C9] times 1176. repeat step 1-1174 for X![C3,C11,C12,C13,C,C2,C4,C5,C6,C7,C8,C9,C10] times 1177. repeat step 1-1175 for X![C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3] times 1178. repeat step 1-1176 for X![C4,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C5] times 1179. repeat step 1-1177 for X![C4,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C5,C6] times 1180. repeat step 1-1178 for X![C4,C8,C9,C10,C11,C12,C13,C,C2,C3,C5,C6,C7] times 1181. repeat step 1-1179 for X![C4,C9,C10,C11,C12,C13,C,C2,C3,C5,C6,C7,C8] times 1182. repeat step 1-1180 for X![C4,C10,C11,C12,C13,C,C2,C3,C5,C6,C7,C8,C9] times 1183. repeat step 1-1181 for X![C4,C11,C12,C13,C,C2,C3,C5,C6,C7,C8,C9,C10] times 1184. repeat step 1-1182 for X![C5,C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4] times 1185. repeat step 1-1183 for X![C5,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C6] times 1186. repeat step 1-1184 for X![C5,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C6,C7] times 1187. repeat step 1-1185 for X![C5,C9,C10,C11,C12,C13,C,C2,C3,C4,C6,C7,C8] times 1188. repeat step 1-1186 for X![C5,C10,C11,C12,C13,C,C2,C3,C4,C6,C7,C8,C9] times 1189. repeat step 1-1187 for X![C5,C11,C12,C13,C,C2,C3,C4,C6,C7,C8,C9,C10] times 1190. repeat step 1-1188 for X![C6,C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5] times 1191. repeat step 1-1189 for X![C6,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C7] times 1192. repeat step 1-1190 for X![C6,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C7,C8] times 1193. repeat step 1-1191 for X![C6,C10,C11,C12,C13,C,C2,C3,C4,C5,C7,C8,C9] times 1194. repeat step 1-1192 for X![C6,C11,C12,C13,C,C2,C3,C4,C5,C7,C8,C9,C10] times 1195. repeat step 1-1193 for X![C7,C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6] times 1196. repeat step 1-1194 for X![C7,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C8] times 1197. repeat step 1-1195 for X![C7,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C8,C9] times 1198. repeat step 1-1196 for X![C7,C11,C12,C13,C,C2,C3,C4,C5,C6,C8,C9,C10] times 1199. repeat step 1-1197 for X![C8,C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7] times 1200. repeat step 1-1198 for X![C8,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C9] times 1201. repeat step 1-1199 for X![C8,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C9,C10] times 1202. repeat step 1-1200 for X![C9,C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8] times 1203. repeat step 1-1201 for X![C9,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C10] times 1204. repeat step 1-1202 for X![C10,C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9] times 1205. repeat step 1-1203 for X![C11,C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10] times 1206. repeat step 1-1204 for X![C12,C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11] times 1207. repeat step 1-1205 for X![C13,C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12] times 1208. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]} 1209. 984.734.546.347.976.521.896.756.997.^431,112,937.985.432.657.863.888.427.999#^^^^########^^^^######>#^## 1210. 643.732.547.543.876.975.325.553.424.655.432.598.000^(X^X^X^X^......(X Times X)...X^X^X^) 1211. 1234567898765432123456789876543212345678987654321234567898765432123456789876543212345678969^^^^^^^^^^^^^^^^^^^^^^^X 1212. 864209753186427531642531423120{864209753186427531642531423120}X 1213. {987654321234567890,X(987654321234567890)987654321234567890} 1214. {9876543210,9876543210(X,X)9876543210} 1215. E(Y)Y#^^...^^#^#Y (X ^'s), where Y is Rayo's X-th number 1216. {X(0(X+1)->{X+1})X}***...***^^^...^^^###...###\\\...\\\///...///{X(0(X+1)->{X+1})X} with {X(0(X+1)->{X+1})X} *'s and ^'s and #'s and \'s and /'s 1217. $$\Xi^{\Xi(X)}(\Sigma_{X-1}(X))^{\text{Fish number X}}\[[987654321012345678987654321234567890]_X]$$bracewah 1218. repeat step 1-1216 then 1216-1 for {(X%X#X)![X%X#X]} times 1219. X + (C^X) 1220. X + (C2^X) 1221. X + (C3^X) 1222. X + (C4^X) 1223. X + (C5^X) 1224. X + (C6^X) 1225. X + (C7^X) 1226. X + (C8^X) 1227. X + (C9^X) 1228. X + (C10^X) 1229. X + (C11^X) 1230. X + (C12^X) 1231. X + (C13^X) 1232. X + ((C+C2)^X) 1233. X + ((C+C3)^X) 1234. X + ((C+C4)^X) 1235. X + ((C+C5)^X) 1236. X + ((C+C6)^X) 1237. X + ((C+C7)^X) 1238. X + ((C+C8)^X) 1239. X + ((C+C9)^X) 1240. X + ((C+C10)^X) 1241. X + ((C+C11)^X) 1242. X + ((C+C12)^X) 1243. X + ((C+C13)^X) 1244. X + ((C+C2+C3)^X) 1245. X + ((C+C2+C4)^X) 1246. X + ((C+C2+C5)^X) 1247. X + ((C+C2+C6)^X) 1248. X + ((C+C2+C7)^X) 1249. X + ((C+C2+C8)^X) 1250. X + ((C+C2+C9)^X) 1251. X + ((C+C2+C10)^X) 1252. X + ((C+C2+C11)^X) 1253. X + ((C+C2+C12)^X) 1254. X + ((C+C2+C13)^X) 1255. X + ((C+C2+C3+C4)^X) 1256. X + ((C+C2+C3+C5)^X) 1257. X + ((C+C2+C3+C6)^X) 1258. X + ((C+C2+C3+C7)^X) 1259. X + ((C+C2+C3+C8)^X) 1260. X + ((C+C2+C3+C9)^X) 1261. X + ((C+C2+C3+C10)^X) 1262. X + ((C+C2+C3+C11)^X) 1263. X + ((C+C2+C3+C12)^X) 1264. X + ((C+C2+C3+C13)^X) 1265. X + ((C+C2+C3+C4+C5)^X) 1266. X + ((C+C2+C3+C4+C6)^X) 1267. X + ((C+C2+C3+C4+C7)^X) 1268. X + ((C+C2+C3+C4+C8)^X) 1269. X + ((C+C2+C3+C4+C9)^X) 1270. X + ((C+C2+C3+C4+C10)^X) 1271. X + ((C+C2+C3+C4+C11)^X) 1272. X + ((C+C2+C3+C4+C12)^X) 1273. X + ((C+C2+C3+C4+C13)^X) 1274. X + ((C+C2+C3+C4+C5+C6)^X) 1275. X + ((C+C2+C3+C4+C5+C7)^X) 1276. X + ((C+C2+C3+C4+C5+C8)^X) 1277. X + ((C+C2+C3+C4+C5+C9)^X) 1278. X + ((C+C2+C3+C4+C5+C10)^X) 1279. X + ((C+C2+C3+C4+C5+C11)^X) 1280. X + ((C+C2+C3+C4+C5+C12)^X) 1281. X + ((C+C2+C3+C4+C5+C13)^X) 1282. X + ((C+C2+C3+C4+C5+C6+C7)^X) 1283. X + ((C+C2+C3+C4+C5+C6+C8)^X) 1284. X + ((C+C2+C3+C4+C5+C6+C9)^X) 1285. X + ((C+C2+C3+C4+C5+C6+C10)^X) 1286. X + ((C+C2+C3+C4+C5+C6+C11)^X) 1287. X + ((C+C2+C3+C4+C5+C6+C12)^X) 1288. X + ((C+C2+C3+C4+C5+C6+C13)^X) 1289. X + ((C+C2+C3+C4+C5+C6+C7+C8)^X) 1290. X + ((C+C2+C3+C4+C5+C6+C7+C9)^X) 1291. X + ((C+C2+C3+C4+C5+C6+C7+C10)^X) 1292. X + ((C+C2+C3+C4+C5+C6+C7+C11)^X) 1293. X + ((C+C2+C3+C4+C5+C6+C7+C12)^X) 1294. X + ((C+C2+C3+C4+C5+C6+C7+C13)^X) 1295. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9)^X) 1296. X + ((C+C2+C3+C4+C5+C6+C7+C8+C10)^X) 1297. X + ((C+C2+C3+C4+C5+C6+C7+C8+C11)^X) 1298. X + ((C+C2+C3+C4+C5+C6+C7+C8+C12)^X) 1299. X + ((C+C2+C3+C4+C5+C6+C7+C8+C13)^X) 1300. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10)^X) 1301. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C11)^X) 1302. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C12)^X) 1303. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C13)^X) 1304. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)^X) 1305. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C12)^X) 1306. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C13)^X) 1307. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12)^X) 1308. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C13)^X) 1309. X + ((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12+C13)^X) 1310. X * (C^X) 1311. X * (C2^X) 1312. X * (C3^X) 1313. X * (C4^X) 1314. X * (C5^X) 1315. X * (C6^X) 1316. X * (C7^X) 1317. X * (C8^X) 1318. X * (C9^X) 1319. X * (C10^X) 1320. X * (C11^X) 1321. X * (C12^X) 1322. X * (C13^X) 1323. X * ((C*C2)^X) 1324. X * ((C*C3)^X) 1325. X * ((C*C4)^X) 1326. X * ((C*C5)^X) 1327. X * ((C*C6)^X) 1328. X * ((C*C7)^X) 1329. X * ((C*C8)^X) 1330. X * ((C*C9)^X) 1331. X * ((C*C10)^X) 1332. X * ((C*C11)^X) 1333. X * ((C*C12)^X) 1334. X * ((C*C13)^X) 1335. X * ((C*C2*C3)^X) 1336. X * ((C*C2*C4)^X) 1337. X * ((C*C2*C5)^X) 1338. X * ((C*C2*C6)^X) 1339. X * ((C*C2*C7)^X) 1340. X * ((C*C2*C8)^X) 1341. X * ((C*C2*C9)^X) 1342. X * ((C*C2*C10)^X) 1343. X * ((C*C2*C11)^X) 1344. X * ((C*C2*C12)^X) 1345. X * ((C*C2*C13)^X) 1346. X * ((C*C2*C3*C4)^X) 1347. X * ((C*C2*C3*C5)^X) 1348. X * ((C*C2*C3*C6)^X) 1349. X * ((C*C2*C3*C7)^X) 1350. X * ((C*C2*C3*C8)^X) 1351. X * ((C*C2*C3*C9)^X) 1352. X * ((C*C2*C3*C10)^X) 1353. X * ((C*C2*C3*C11)^X) 1354. X * ((C*C2*C3*C12)^X) 1355. X * ((C*C2*C3*C13)^X) 1356. X * ((C*C2*C3*C4*C5)^X) 1357. X * ((C*C2*C3*C4*C6)^X) 1358. X * ((C*C2*C3*C4*C7)^X) 1359. X * ((C*C2*C3*C4*C8)^X) 1360. X * ((C*C2*C3*C4*C9)^X) 1361. X * ((C*C2*C3*C4*C10)^X) 1362. X * ((C*C2*C3*C4*C11)^X) 1363. X * ((C*C2*C3*C4*C12)^X) 1364. X * ((C*C2*C3*C4*C13)^X) 1365. X * ((C*C2*C3*C4*C5*C6)^X) 1366. X * ((C*C2*C3*C4*C5*C7)^X) 1367. X * ((C*C2*C3*C4*C5*C8)^X) 1368. X * ((C*C2*C3*C4*C5*C9)^X) 1369. X * ((C*C2*C3*C4*C5*C10)^X) 1370. X * ((C*C2*C3*C4*C5*C11)^X) 1371. X * ((C*C2*C3*C4*C5*C12)^X) 1372. X * ((C*C2*C3*C4*C5*C13)^X) 1373. X * ((C*C2*C3*C4*C5*C6*C7)^X) 1374. X * ((C*C2*C3*C4*C5*C6*C8)^X) 1375. X * ((C*C2*C3*C4*C5*C6*C9)^X) 1376. X * ((C*C2*C3*C4*C5*C6*C10)^X) 1377. X * ((C*C2*C3*C4*C5*C6*C11)^X) 1378. X * ((C*C2*C3*C4*C5*C6*C12)^X) 1379. X * ((C*C2*C3*C4*C5*C6*C13)^X) 1380. X * ((C*C2*C3*C4*C5*C6*C7*C8)^X) 1381. X * ((C*C2*C3*C4*C5*C6*C7*C9)^X) 1382. X * ((C*C2*C3*C4*C5*C6*C7*C10)^X) 1383. X * ((C*C2*C3*C4*C5*C6*C7*C11)^X) 1384. X * ((C*C2*C3*C4*C5*C6*C7*C12)^X) 1385. X * ((C*C2*C3*C4*C5*C6*C7*C13)^X) 1386. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9)^X) 1387. X * ((C*C2*C3*C4*C5*C6*C7*C8*C10)^X) 1388. X * ((C*C2*C3*C4*C5*C6*C7*C8*C11)^X) 1389. X * ((C*C2*C3*C4*C5*C6*C7*C8*C12)^X) 1390. X * ((C*C2*C3*C4*C5*C6*C7*C8*C13)^X) 1391. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10)^X) 1392. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C11)^X) 1393. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C12)^X) 1394. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C13)^X) 1395. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)^X) 1396. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C12)^X) 1397. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C13)^X) 1398. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12)^X) 1399. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C13)^X) 1400. X * ((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12*C13)^X) 1401. X^(C^X) 1402. X^(C2^X) 1403. X^(C3^X) 1404. X^(C4^X) 1405. X^(C5^X) 1406. X^(C6^X) 1407. X^(C7^X) 1408. X^(C8^X) 1409. X^(C9^X) 1410. X^(C10^X) 1411. X^(C11^X) 1412. X^(C12^X) 1413. X^(C13^X) 1414. X^((C+C2)^X) 1415. X^((C+C3)^X) 1416. X^((C+C4)^X) 1417. X^((C+C5)^X) 1418. X^((C+C6)^X) 1419. X^((C+C7)^X) 1420. X^((C+C8)^X) 1421. X^((C+C9)^X) 1422. X^((C+C10)^X) 1423. X^((C+C11)^X) 1424. X^((C+C12)^X) 1425. X^((C+C13)^X) 1426. X^((C+C2+C3)^X) 1427. X^((C+C2+C4)^X) 1428. X^((C+C2+C5)^X) 1429. X^((C+C2+C6)^X) 1430. X^((C+C2+C7)^X) 1431. X^((C+C2+C8)^X) 1432. X^((C+C2+C9)^X) 1433. X^((C+C2+C10)^X) 1434. x^((C+C2+C11)^X) 1435. X^((C+C2+C12)^X) 1436. x^((C+C2+C13)^X) 1437. X^((C+C2+C3+C4)^X) 1438. X^((C+C2+C3+C5)^X) 1439. X^((C+C2+C3+C6)^X) 1440. X^((C+C2+C3+C7)^X) 1441. X^((C+C2+C3+C8)^X) 1442. X^((C+C2+C3+C9)^X) 1443. X^((C+C2+C3+C10)^X) 1444. X^((C+C2+C3+C11)^X) 1445. X^((C+C2+C3+C12)^X) 1446. X^((C+C2+C3+C13)^X) 1447. X^((C+C2+C3+C4+C5)^X) 1448. X^((C+C2+C3+C4+C6)^X) 1449. X^((C+C2+C3+C4+C7)^X) 1450. X^((C+C2+C3+C4+C8)^X) 1451. X^((C+C2+C3+C4+C9)^X) 1452. X^((C+C2+C3+C4+C10)^X) 1453. X^((C+C2+C3+C4+C11)^X) 1454. X^((C+C2+C3+C4+C12)^X) 1455. X^((C+C2+C3+C4+C13)^X) 1456. X^((C+C2+C3+C4+C5+C6)^X) 1457. X^((C+C2+C3+C4+C5+C7)^X) 1458. X^((C+C2+C3+C4+C5+C8)^X) 1459. X^((C+C2+C3+C4+C5+C9)^X) 1460. X^((C+C2+C3+C3+C5+C10)^X) 1461. X^((C+C2+C3+C4+C5+C11)^X) 1462. X^((C+C2+C3+C3+C5+C12)^X) 1463. X^((C+C2+C3+C4+C5+C13)^X) 1464. X^((C+C2+C3+C4+C5+C6+C7)^X) 1465. X^((C+C2+C3+C4+C5+C6+C8)^X) 1466. X^((C+C2+C3+C4+C5+C6+C9)^X) 1467. X^((C+C2+C3+C4+C5+C6+C10)^X) 1468. X^((C+C2+C3+C4+C5+C6+C11)^X) 1469. X^((C+C2+C3+C4+C5+C6+C12)^X) 1470. X^((C+C2+C3+C4+C5+C6+C13)^X) 1471. X^((C+C2+C3+C4+C5+C6+C7+C8)^X) 1472. X^((C+C2+C3+C4+C5+C6+C7+C9)^X) 1473. X^((C+C2+C3+C4+C5+C6+C7+C10)^X) 1474. X^((C+C2+C3+C4+C5+C6+C7+C11)^X) 1475. X^((C+C2+C3+C4+C5+C6+C7+C12)^X) 1476. X^((C+C2+C3+C4+C5+C6+C7+C13)^X) 1477. X^((C+C2+C3+C4+C5+C6+C7+C8+C9)^X) 1478. X^((C+C2+C3+C4+C5+C6+C7+C8+C10)^X) 1479. X^((C+C2+C3+C4+C5+C6+C7+C8+C11)^X) 1480. X^((C+C2+C3+C4+C5+C6+C7+C8+C12)^X) 1481. X^((C+C2+C3+C4+C5+C6+C7+C8+C13)^X) 1482. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10)^X) 1483. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C11)^X) 1484. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C12)^X) 1485. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C13)^X) 1486. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11)^X) 1487. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C12)^X) 1488. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C13)^X) 1489. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12)^X) 1490. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C13)^X) 1491. X^((C+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12+C13)^X) 1492. X^((C*C)^X) 1493. X^((C*C2)^X) 1494. X^((C*C3)^X) 1495. X^((C*C4)^X) 1496. X^((C*C5)^X) 1497. X^((C*C6)^X) 1498. X^((C*C7)^X) 1499. X^((C*C8)^X) 1500. X^((C*C9)^X) 1501. X^((C*C10)^X) 1502. X^((C*C11)^X) 1503. X^((C*C12)^X) 1504. X^((C*C13)^X) 1505. X^((C*C2*C3)^X) 1506. X^((C*C2*C4)^X) 1507. X^((C*C2*C5)^X) 1508. X^((C*C2*C6)^X) 1509. X^((C*C2*C7)^X) 1510. X^((C*C2*C8)^X) 1511. X^((C*C2*C9)^X) 1512. X^((C*C2*C10)^X) 1513. X^((C*C2*C11)^X) 1514. X^((C*C2*C12)^X) 1515. X^((C*C2*C13)^X) 1516. X^((C*C2*C3*C4)^X) 1517. X^((C*C2*C3*C5)^X) 1518. X^((C*C2*C3*C6)^X) 1519. X^((C*C2*C3*C7)^X) 1520. X^((C*C2*C3*C8)^X) 1521. X^((C*C2*C3*C9)^X) 1522. X^((C*C2*C3*C10)^X) 1523. X^((C*C2*C3*C11)^X) 1524. X^((C*C2*C3*C12)^X) 1525. X^((C*C2*C3*C13)^X) 1526. X^((C*C2*C3*C4*C5)^X) 1527. X^((C*C2*C3*C4*C6)^X) 1528. X^((C*C2*C3*C4*C7)^X) 1529. X^((C*C2*C3*C4*C8)^X) 1530. X^((C*C2*C3*C4*C9)^X) 1531. X^((C*C2*C3*C4*C10)^X) 1532. X^((C*C2*C3*C4*C11)^X) 1533. X^((C*C2*C3*C4*C12)^X) 1534. X^((C*C2*C3*C4*C13)^X) 1535. X^((C*C2*C3*C4*C5*C6)^X) 1536. X^((C*C2*C3*C4*C5*C7)^X) 1537. X^((C*C2*C3*C4*C5*C8)^X) 1538. X^((C*C2*C3*C4*C5*C9)^X) 1539. X^((C*C2*C3*C4*C5*C10)^X) 1540. X^((C*C2*C3*C4*C5*C11)^X) 1541. X^((C*C2*C3*C4*C5*C12)^X) 1542. X^((C*C2*C3*C4*C5*C13)^X) 1543. X^((C*C2*C3*C4*C5*C6*C7)^X) 1544. X^((C*C2*C3*C4*C5*C6*C8)^X) 1545. X^((C*C2*C3*C4*C5*C6*C9)^X) 1546. X^((C*C2*C3*C4*C5*C6*C10)^X) 1547. X^((C*C2*C3*C4*C5*C6*C11)^X) 1548. X^((C*C2*C3*C4*C5*C6*C12)^X) 1549. X^((C*C2*C3*C4*C5*C6*C13)^X) 1550. X^((C*C2*C3*C4*C5*C6*C7*C8)^X) 1551. X^((C*C2*C3*C4*C5*C6*C7*C9)^X) 1552. X^((C*C2*C3*C4*C5*C6*C7*C10)^X) 1553. X^((C*C2*C3*C4*C5*C6*C7*C11)^X) 1554. X^((C*C2*C3*C4*C5*C6*C7*C12)^X) 1555. X^((C*C2*C3*C4*C5*C6*C7*C13)^X) 1556. X^((C*C2*C3*C4*C5*C6*C7*C8*C9)^X) 1557. X^((C*C2*C3*C4*C5*C6*C7*C8*C10)^X) 1558. X^((C*C2*C3*C4*C5*C6*C7*C8*C11)^X) 1559. X^((C*C2*C3*C4*C5*C6*C7*C8*C12)^X) 1560. X^((C*C2*C3*C4*C5*C6*C7*C8*C13)^X) 1561. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10)^X) 1562. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C11)^X) 1563. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C12)^X) 1564. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C13)^X) 1565. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11)^X) 1566. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C12)^X) 1567. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C13)^X) 1568. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12)^X) 1569. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C13)^X) 1570. X^((C*C2*C3*C4*C5*C6*C7*C8*C9*C10*C11*C12*C13)^X) 1571. X^((C^C)^X) 1572. X^((C^C2)^X) 1573. X^((C^C3)^X) 1574. X^((C^C4)^X) 1575. X^((C^C5)^X) 1576. X^((C^C6)^X) 1577. X^((C^C7)^X) 1578. X^((C^C8)^X) 1579. X^((C^C9)^X) 1580. X^((C^C10)^X) 1581. X^((C^C11)^X) 1582. X^((C^C12)^X) 1583. X^((C^C13)^X) 1584. X^((C^C2^C3)^X) 1585. X^((C^C2^C4)^X) 1586. X^((C^C2^C5)^X) 1587. X^((C^C2^C6)^X) 1588. X^((C^C2^C7)^X) 1589. X^((C^C2^C8)^X) 1590. X^((C^C2^C9)^X) 1591. X^((C^C2^C10)^X) 1592. X^((C^C2^C11)^X) 1593. X^((C^C2^C12)^X) 1594. X^((C^C2^C13)^X) 1595. X^((C^C2^C3^C4)^X) 1596. X^((C^C2^C3^C5)^X) 1597. X^((C^C2^C3^C6)^X) 1598. X^((C^C2^C3^C7)^X) 1599. X^((C^C2^C3^C8)^X) 1600. X^((C^C2^C3^C9)^X) 1601. X^((C^C2^C3^C10)^X) 1602. X^((C^C2^C3^C11)^X) 1603. X^((C^C2^C3^C12)^X) 1604. X^((C^C2^C3^C13)^X) 1605. X^((C^C2^C3^C4^C5)^X) 1606. X^((C^C2^C3^C4^C6)^X) 1607. X^((C^C2^C3^C4^C7)^X) 1608. X^((C^C2^C3^C4^C8)^X) 1609. X^((C^C2^C3^C4^C9)^X) 1610. X^((C^C2^C3^C4^C10)^X) 1611. X^((C^C2^C3^C4^C11)^X) 1612. X^((C^C2^C3^C4^C12)^X) 1613. X^((C^C2^C3^C4^C13)^X) 1614. X^((C^C2^C3^C4^C5^C6)^X) 1615. X^((C^C2^C3^C4^C5^C7)^X) 1616. X^((C^C2^C3^C4^C5^C8)^X) 1617. X^((C^C2^C3^C4^C5^C9)^X) 1618. X^((C^C2^C3^C4^C5^C10)^X) 1619. X^((C^C2^C3^C4^C5^C11)^X) 1620. X^((C^C2^C3^C4^C5^C12)^X) 1621. X^((C^C2^C3^C4^C5^C13)^X) 1622. X^((C^C2^C3^C4^C5^C6^C7)^X) 1623. X^((C^C2^C3^C4^C5^C6^C8)^X) 1624. X^((C^C2^C3^C4^C5^C6^C9)^X) 1625. X^((C^C2^C3^C4^C5^C6^C10)^X) 1626. X^((C^C2^C3^C4^C5^C6^C11)^X) 1627. X^((C^C2^C3^C4^C5^C6^C12)^X) 1628. X^((C^C2^C3^C4^C5^C6^C13)^X) 1629. X^((C^C2^C3^C4^C5^C6^C7^C8)^X) 1630. X^((C^C2^C3^C4^C5^C6^C7^C9)^X) 1631. X^((C^C2^C3^C4^C5^C6^C7^C10)^X) 1632. X^((C^C2^C3^C4^C5^C6^C7^C11)^X) 1633. X^((C^C2^C3^C4^C5^C6^C7^C12)^X) 1634. X^((C^C2^C3^C4^C5^C6^C7^C13)^X) 1635. X^((C^C2^C3^C4^C5^C6^C7^C8^C9)^X) 1636. X^((C^C2^C3^C4^C5^C6^C7^C8^C10)^X) 1637. X^((C^C2^C3^C4^C5^C6^C7^C8^C11)^X) 1638. X^((C^C2^C3^C4^C5^C6^C7^C8^C12)^X) 1639. X^((C^C2^C3^C4^C5^C6^C7^C8^C13)^X) 1640. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10)^X) 1641. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C11)^X) 1642. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C12)^X) 1643. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C13)^X) 1644. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11)^X) 1645. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C12)^X) 1646. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C13)^X) 1647. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12)^X) 1648. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C13)^X) 1649. X^((C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13)^X) Create an alternate version of Croutonillion by stopping here. Call this number C14. 1650. {((X,X)!)![((X,X)!),((X,X)!),....((X,X)!) Times terms ((X,X)!)....((X,X)!),((X,X)!)]} 1651. $$C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14$$ 1652. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^X)$)
1653. (X$)![C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X] 1654. X^(103*103*103*103*103*103*103*103,000,000+3) 1655. X^(103*103*103*103*103*103*103*103,000,000,000+3) 1656. X*(103*103*103*103*103*103*103*103,000,000+3) 1657. X*[(103*103*103*103*103*103*103*103,000,000,000+3)] 1658. X!(103*103*103*103*103*103*103*103,000,000+3) 1659. X!(103*103*103*103*103*103*103*103,000,000,000+3) 1660. X#(103*103*103*103*103*103*103*103,000,000+3) 1661. X#(103*103*103*103*103*103*103*103,000,000,000+3) 1662. X%(103*103*103*103*103*103*103*103,000,000+3) 1663. X%(103*103*103*103*103*103*103*103,000,000,000+3) 1664. X^(203,542*10138,732,019,349) 1665. X^(Picillion) 1666. X^($$2 \lfloor 10^{20} / 9\rfloor$$) 1667. X^(103,000,000,000,003) 1668. X^(Femtillion) 1669. X^($$10^{3\times 10^{15}+3}$$) 1670. X^($$10^{3\times 10^{3,000,000}+3}$$) 1671. X^(Gigillion) 1672. X^($$10^{3\times 10^{3,000,000,000}+3}$$) 1673. X^($$2 \lfloor 10,000,000,000^{96,543,220,765,693} / 2\rfloor$$) 1674. X^($$2 \lfloor 10,000,000,000,000,000^{457,748,896,324,123,446,6720} / 3\rfloor$$) 1675. X + 1 1676. X + 1 1677. X + 1 1678. X^($$\lbrace \underbrace{13,13,13,\cdots,13,13,13}_{98546372819073826354217927}\rbrace$$) 1679. X^($$\lbrace \underbrace{3333,3333,3333,\cdots,3333,3333,3333}_{63524162738926354273890825127}\rbrace$$) 1680. X^($$\lbrace \underbrace{123,123,123,\cdots,123,123,123}_{23415367892635423123425648983762534327}\rbrace$$) 1681. X^($$\lbrace \underbrace{5673,5673,5673,\cdots,5673,5673,5673}_{87437281984736546378190928746535362784984}\rbrace$$) 1682. X^($$\lbrace \underbrace{4763,4763,4763,\cdots,4763,4763,4763}_{67354264736547389028190362737487463521185}\rbrace$$) 1683. X^($$\lbrace \underbrace{3333,3333,3333,\cdots,3333,3333,3333}_{83256174839847569378213546748373647589335}\rbrace$$) 1684. X^($$\lbrace \underbrace{173,173,173,\cdots,173,173,173}_{43627489574864783647382918746352474859973835236}\rbrace$$) 1685. X^($$\lbrace \underbrace{579,579,579,\cdots,579,579,579}_{46378291874653748957382984765374637987382989978}\rbrace$$) 1686. X^($$\lbrace \underbrace{698,698,698,\cdots,698,698,698}_{25362537485904736654738490536478987645794874674}\rbrace$$) 1687. X^($$\lbrace \underbrace{999,999,999,\cdots,999,999,999}_{99999999999999999999999999999999999999999999999}\rbrace$$) 1688. X^($$\lbrace \underbrace{888,888,888,\cdots,888,888,888}_{88888888888888888888888888888888888888888888888}\rbrace$$) 1689. X^($$\lbrace \underbrace{777,777,777,\cdots,777,777,777}_{77777777777777777777777777777777777777777777777}\rbrace$$) 1690. X^($$\lbrace \underbrace{666,666,666,\cdots,666,666,666}_{66666666666666666666666666666666666666666666666}\rbrace$$) 1691. X^($$\lbrace \underbrace{555,555,555,\cdots,555,555,555}_{55555555555555555555555555555555555555555555555}\rbrace$$) 1692. X^($$\lbrace \underbrace{444,444,444,\cdots,444,444,444}_{44444444444444444444444444444444444444444444444}\rbrace$$) 1693. X^($$\lbrace \underbrace{333,333,333,\cdots,333,333,333}_{33333333333333333333333333333333333333333333333}\rbrace$$) 1694. X^($$\lbrace \underbrace{222,222,222,\cdots,222,222,222}_{22222222222222222222222222222222222222222222222}\rbrace$$) 1695. X^($$\lbrace \underbrace{111,111,111,\cdots,111,111,111}_{1111111111111111111111111111111111111111111111}\rbrace$$) 1696. X^($$\lbrace \underbrace{987654321,987654321,987654321,\cdots,987654321,987654321,987654321}_{9876543210}\rbrace$$) 1697. X^($$\lbrace \underbrace{97531,97531,97531,\cdots,97531,97531,97531}_{9753197531975319753197531975319753}\rbrace$$) 1698. X^($$\lbrace \underbrace{8642,8642,8642,\cdots,8642,8642,8642}_{8642864286428642864286428642864286428642}\rbrace$$) 1699. X^($$\lbrace \underbrace{999999999,999999999,999999999,\cdots,999999999,999999999,999999999}_{9999999999}\rbrace$$) 1700. X^($$\lbrace \underbrace{88888888,88888888,88888888,\cdots,88888888,88888888,88888888}_{8888888888888888}\rbrace$$) 1701. X^($$\lbrace \underbrace{7777777,7777777,7777777,\cdots,7777777,7777777,7777777}_{7777777777777777777777}\rbrace$$) 1702. X^($$\lbrace \underbrace{666666,666666,666666,\cdots,666666,666666,666666}_{6666666666666666666666666666}\rbrace$$) 1703. X^($$\lbrace \underbrace{55555,55555,55555,\cdots,55555,55555,55555}_{5555555555555555555555555555555555}\rbrace$$) 1704. X^($$\lbrace \underbrace{4444,4444,4444,\cdots,4444,4444,4444}_{4444444444444444444444444444444444444444}\rbrace$$) 1705. X^($$\lbrace \underbrace{333,333,333,\cdots,333,333,333}_{3333333333333333333333333333333333333333333333}\rbrace$$) 1706. X^($$\lbrace \underbrace{22,22,22,\cdots,22,22,22}_{2222222222222222222222222222222222222222222222222222}\rbrace$$) 1707. X^($$\lbrace \underbrace{10,10,10,\cdots,10,10,10}_{1010101010101010101010101010101010101010101010101010}\rbrace$$) 1708. X^($$\lbrace \underbrace{12,12,12,\cdots,12,12,12}_{1212121212121212121212121212121212121212121212121212}\rbrace$$) 1709. X^($$\lbrace \underbrace{23,23,23,\cdots,23,23,23}_{2323232323232323232323232323232323232323232323232323}\rbrace$$) 1710. X^($$\lbrace \underbrace{34,34,34,\cdots,34,34,34}_{3434343434343434343434343434343434343434343434343434}\rbrace$$) 1711. X^($$\lbrace \underbrace{45,45,45,\cdots,45,45,45}_{4545454545454545454545454545454545454545454545454545}\rbrace$$) 1712. X^($$\lbrace \underbrace{56,56,56,\cdots,56,56,56}_{5656565656565656565656565656565656565656565656565656}\rbrace$$) 1713. X^($$\lbrace \underbrace{67,67,67,\cdots,67,67,67}_{6767676767676767676767676767676767676767676767676767}\rbrace$$) 1714. X^($$\lbrace \underbrace{78,78,78,\cdots,78,78,78}_{7878787878787878787878787878787878787878787878787878}\rbrace$$) 1715. X^($$\lbrace \underbrace{89,89,89,\cdots,89,89,89}_{8989898989898989898989898989898989898989898989898989}\rbrace$$) 1716. X^($$\lbrace \underbrace{90,90,90,\cdots,90,90,90}_{9090909090909090909090909090909090909090909090909090}\rbrace$$) 1717. X^($$\lbrace \underbrace{987,987,987,\cdots,987,987,987}_{9879879879879879879879879879879879879879879879}\rbrace$$) 1718. X^($$\lbrace \underbrace{876,876,876,\cdots,876,876,876}_{8768768768768768768768768768768768768768768768}\rbrace$$) 1719. X^($$\lbrace \underbrace{765,765,765,\cdots,765,765,765}_{7657657657657657657657657657657657657657657657}\rbrace$$) 1720. X^($$\lbrace \underbrace{654,654,654,\cdots,654,654,654}_{6546546546546546546546546546546546546546546546}\rbrace$$) 1721. X^($$\lbrace \underbrace{543,543,543,\cdots,543,543,543}_{5435435435435435435435435435435435435435435435}\rbrace$$) 1722. X^($$\lbrace \underbrace{432,432,432,\cdots,432,432,432}_{4324324324324324324324324324324324324324324324}\rbrace$$) 1723. X^($$\lbrace \underbrace{321,321,321,\cdots,321,321,321}_{3213213213213213213213213213213213213213213213}\rbrace$$) 1724. X^($$\lbrace \underbrace{210,210,210,\cdots,210,210,210}_{2102102102102102102102102102102102102102102102}\rbrace$$) 1725. X^($$\lbrace \underbrace{109,109,109,\cdots,109,109,109}_{1091091091091091091091091091091091091091091091}\rbrace$$) 1726. X^($$\lbrace \underbrace{246,246,246,\cdots,246,246,246}_{2462462462462462462462462462462462462462462462}\rbrace$$) 1727. X^($$\lbrace \underbrace{468,468,468,\cdots,468,468,468}_{4684684684684684684684684684684684684684684684}\rbrace$$) 1728. X^($$\lbrace \underbrace{680,680,680,\cdots,689,680,680}_{6806806806806806806806806806806806806806806806}\rbrace$$) 1729. X^($$\lbrace \underbrace{135,135,135,\cdots,135,135,135}_{1351351351351351351351351351351351351351351351}\rbrace$$) 1730. X^($$\lbrace \underbrace{357,357,357,\cdots,357,357,357}_{3573573573573573573573573573573573573573573573}\rbrace$$) 1731. X^($$\lbrace \underbrace{579,579,579,\cdots,579,579,579}_{5795795795795795795795795795795795795795795795}\rbrace$$) 1732. X^($$\lbrace \underbrace{791,791,791,\cdots,791,791,791}_{7917917917917917917917917917917917917917917917}\rbrace$$) 1733. X^($$\lbrace \underbrace{913,913,913,\cdots,913,913,913}_{9139139139139139139139139139139139139139139139}\rbrace$$) 1734. X^($$\lbrace \underbrace{136,136,136,\cdots,136,136,136}_{1361361361361361361361361361361361361361361361}\rbrace$$) 1735. X^($$\lbrace \underbrace{350,350,350,\cdots,350,350,350}_{3503503503503503503503503503503503503503503503}\rbrace$$) 1736. X^($$\lbrace \underbrace{572,572,572,\cdots,572,572,572}_{5725725725725725725725725725725725725725725725}\rbrace$$) 1737. X^($$\lbrace \underbrace{727,727,727,\cdots,727,727,727}_{7277277277277277277277277277277277277277277277}\rbrace$$) 1738. X^($$\lbrace \underbrace{275,275,275,\cdots,275,275,275}_{2752752752752752752752752752752752752752752752}\rbrace$$) 1739. X^($$\lbrace \underbrace{755,755,755,\cdots,755,755,755}_{7557557557557557557557557557557557557557557557}\rbrace$$) 1740. X^($$\lbrace \underbrace{1030,1030,1030,\cdots,1030,1030,1030}_{1030103010301030103010301030103010301030}\rbrace$$) 1741. X^($$\lbrace \underbrace{1785,1785,1785,\cdots,1785,1785,1785}_{1785178517851785178517851785178517851785}\rbrace$$) 1742. X^($$\lbrace \underbrace{2815,2815,2815,\cdots,2815,2815,2815}_{2815281528152815281528152815281528152815}\rbrace$$) 1743. X^($$\lbrace \underbrace{4600,4600,4600,\cdots,4600,4600,4600}_{4600460046004600460046004600460046004600}\rbrace$$) 1744. X^($$\lbrace \underbrace{7415,7415,7415,\cdots,7415,7415,7415}_{7415741574157415741574157415741574157415}\rbrace$$) 1745. X^($$\lbrace \underbrace{12015,12015,12015,\cdots,12015,12015,12015}_{1201512015120151201512015120151201}\rbrace$$) 1746. X^($$\lbrace \underbrace{17430,17430,17430,\cdots,17430,17430,17430}_{1743017430174301743017430174301743}\rbrace$$) 1747. X^($$\lbrace \underbrace{29445,29445,29445,\cdots,29445,29445,29445}_{2944529445294452944529445294452944}\rbrace$$) 1748. X^($$\lbrace \underbrace{46875,46875,46875,\cdots,46875,46875,46875}_{4687546875468754687546875468754687}\rbrace$$) 1749. X^($$\lbrace \underbrace{75315,75315,75315,\cdots,75315,75315,75315}_{7531575315753157531575315753157531}\rbrace$$) 1750. X^($$\lbrace \underbrace{121190,121190,121190\cdots,121190,121190,121190}_{12119012119012119012119012119}\rbrace$$) 1751. X^($$\lbrace \underbrace{196405,196405,196405\cdots,196405,196405,196405}_{19640519640519640519640519640}\rbrace$$) Create an alternate version of Croutonillion by stopping here. Call this number C15. 1752. $$C15\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14}C15$$ 1753. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^C15^^^^^^^^^^^^^^^X)$)
1754. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X)
1755. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X)
1756. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X)
1757. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X)
1758. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X)
1759. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X)
1760. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X)
1761. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X)
1762. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X)
1763. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X)
1764. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X)
1765. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X)
1766. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X)
1767. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14]}(X^X)
1768. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15]}(X^X)
1769. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X)
1770. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X)
1771. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X)
1772. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X)
1773. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X)
1774. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X)
1775. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X)
1776. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X)
1777. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X)
1778. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X)
1779. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X)
1780. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X)
1781. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X)
1782. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C14X]}(X^X)
1783. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X ]}(X^X)
1784. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX
1785. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X
1786. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X
1787. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X
1788. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X
1789. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X
1790. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X
1791. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X
1792. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X
1793. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X
1794. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X
1795. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X
1796. C13X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C13X
1797. C14X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C14X
1798. C15X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C15X
1799. X^X+C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X+C15^X
1800. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15] 1801. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}10012345678909758492715364758699598473939893939 1802. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321746352829282765454738388272 1803. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890847635424242453546 1804. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321848764647 1805. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}11234567890987654321234567890987654321234567890 1806. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567890 1807. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}21234567890987654321234567890987654321234567899 1808. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}32123456789098765432123456789098765432123456789 1809. XE100{#&#&#&#w/grand Sprach Zarathustra #s... &#&#&#&#&#&#&#&#&#&#}43212345678909876543211234567890987654432123345 1810. Repeat step 1,1-2,1-2-3,....1-2-3-....-1-2-3-....1807-1808 for (X^X)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^((X^X)![9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times 1811. Repeat step 1,1-2,1-2-3,....1-2-3-....-1808-1809,then to into reverse order from 1809,1809-1808,......1809-1808.....3-2-1 for (X^X)################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################((X^X)! [999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times 1812. Repeat previous step (X^X)****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times 1813. repeat previous step (X^X)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times 1814. repeat previous step (X^X)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&((X^X)! [9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999]) times 1815. repeat previous step (X^X)&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#&#((X^X)! [99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999])times 1816. Repeat step 1-1814 for Crouton(1) times 1. Crouton(n) = Crouton(n, googoltriplex) 2. Crouton(0, n) = n 3. Crouton(1, n) = {n,n,n} 4. Crouton(2, n) = BB({n,n,n}) 5. Crouton(3, n) = megafuga(booga(BB({n,n,n}))) 6. Crouton(4, n) = E(megafuga(booga(BB({n,n,n}))))#(10^27+1) • ... 1817. Repeat step 1-1815 for Crouton(2) times 1818. Repeat step 1-1816 for Crouton(3) times 1819. Repeat step 1-1817 for Crouton(4) times 1820. Repeat step 1-1818 for Crouton(5) times 1821. Repeat step 1-1819 for Crouton(6) times 1822. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1823. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1824. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1825. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1826. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1827. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1828. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1829. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1830. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1831. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1832. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1833. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1834. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1835. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1836. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1837. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1838. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1839. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1840. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1841. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1842. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1843. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1844. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1845. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1846. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1847. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1848. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1849. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1850. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1851. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1852. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1853. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1854. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1855. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1856. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1857. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1858. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1859. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1860. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1861. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1862. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1863. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1864. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1865. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1866. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998}\rbrace$$) 1867. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997}\rbrace$$) 1868. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996}\rbrace$$) 1869. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995}\rbrace$$) 1870. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999994}\rbrace$$) 1871. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993}\rbrace$$) 1872. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992}\rbrace$$) 1873. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991}\rbrace$$) 1874. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990}\rbrace$$) 1875. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999989}\rbrace$$) 1876. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999988}\rbrace$$) 1877. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987}\rbrace$$) 1878. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999986}\rbrace$$) 1879. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999985}\rbrace$$) 1880. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace$$) 1881. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983}\rbrace$$) 1882. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982}\rbrace$$) 1883. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999981}\rbrace$$) 1884. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999980}\rbrace$$) 1885. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999979}\rbrace$$) 1886. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999978}\rbrace$$) 1887. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999977}\rbrace$$) 1888. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999976}\rbrace$$) 1889. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975}\rbrace$$) 1890. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999974}\rbrace$$) 1891. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999973}\rbrace$$) 1892. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999972}\rbrace$$) 1893. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999971}\rbrace$$) 1894. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999970}\rbrace$$) 1895. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969}\rbrace$$) 1896. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999968}\rbrace$$) 1897. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999967}\rbrace$$) 1898. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999966}\rbrace$$) 1899. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999965}\rbrace$$) 1900. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999964}\rbrace$$) 1901. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999963}\rbrace$$) 1902. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999962}\rbrace$$) 1903. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999961}\rbrace$$) 1904. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999960}\rbrace$$) 1905. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999959}\rbrace$$) 1906. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999958}\rbrace$$) 1907. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999957}\rbrace$$) 1908. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999956}\rbrace$$) 1909. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999955}\rbrace$$) 1910. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999954}\rbrace$$) 1911. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999955}\rbrace$$) 1912. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999954}\rbrace$$) 1913. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999953}\rbrace$$) 1914. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999952}\rbrace$$) 1915. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace$$) 1916. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999951}\rbrace$$) 1917. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999950}\rbrace$$) 1918. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999949}\rbrace$$) 1919. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999948}\rbrace$$) 1920. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999947}\rbrace$$) 1921. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999946}\rbrace$$) 1922. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999945}\rbrace$$) 1923. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999944}\rbrace$$) 1924. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999943}\rbrace$$) 1925. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999942}\rbrace$$) 1926. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999941}\rbrace$$) 1927. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999940}\rbrace$$) 1928. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999939}\rbrace$$) 1929. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999938}\rbrace$$) 1930. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999937}\rbrace$$) 1931. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999936}\rbrace$$) 1932. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999935}\rbrace$$) 1933. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999934}\rbrace$$) 1934. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999933}\rbrace$$) 1935. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999932}\rbrace$$) 1936. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999931}\rbrace$$) 1937. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999930}\rbrace$$) 1938. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999929}\rbrace$$) 1939. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999928}\rbrace$$) 1940. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999927}\rbrace$$) 1941. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999926}\rbrace$$) 1942. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999925}\rbrace$$) 1943. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999924}\rbrace$$) 1944. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999923}\rbrace$$) 1945. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999922}\rbrace$$) 1946. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999921}\rbrace$$) 1947. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999920}\rbrace$$) 1948. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999919}\rbrace$$) 1949. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999918}\rbrace$$) 1950. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999917}\rbrace$$) 1951. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace$$) 1952. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999916}\rbrace$$) 1953. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999915}\rbrace$$) 1954. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999914}\rbrace$$) 1955. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999913}\rbrace$$) 1956. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999912}\rbrace$$) 1957. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999911}\rbrace$$) 1958. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999910}\rbrace$$) 1959. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999909}\rbrace$$) 1960. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999908}\rbrace$$) 1961. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999907}\rbrace$$) 1962. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999906}\rbrace$$) 1963. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999905}\rbrace$$) 1964. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999904}\rbrace$$) 1965. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999903}\rbrace$$) 1966. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999902}\rbrace$$) 1967. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999901}\rbrace$$) 1968. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999900}\rbrace$$) 1969. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}\rbrace$$) 1970. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998}\rbrace$$) 1971. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997}\rbrace$$) 1972. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999996}\rbrace$$) 1973. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995}\rbrace$$) 1974. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999994}\rbrace$$) 1975. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993}\rbrace$$) 1976. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999992}\rbrace$$) 1977. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991}\rbrace$$) 1978. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999990}\rbrace$$) 1979. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999989}\rbrace$$) 1980. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999988}\rbrace$$) 1981. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987}\rbrace$$) 1982. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999986}\rbrace$$) 1983. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999985}\rbrace$$) 1984. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999984}\rbrace$$) 1985. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999983}\rbrace$$) 1986. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999982}\rbrace$$) 1987. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999981}\rbrace$$) 1988. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999980}\rbrace$$) 1989. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999979}\rbrace$$) 1990. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999978}\rbrace$$) 1991. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999977}\rbrace$$) 1992. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999976}\rbrace$$) 1993. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999975}\rbrace$$) 1994. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999974}\rbrace$$) 1995. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999973}\rbrace$$) 1996. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999972}\rbrace$$) 1997. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999971}\rbrace$$) 1998. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999970}\rbrace$$) 1999. X^($$\lbrace \underbrace{9,9,9,\cdots,9,9,9}_{999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969}\rbrace$$) Create an alternate version of Croutonillion by stopping here. Call this number C16. 2000. $$C16\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C15\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C14\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C13\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C12\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C11\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C10\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C9\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C8\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C7\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C6\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C5\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C4\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C3\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C2\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{C\underbrace{\uparrow_{\uparrow_{..._{\uparrow_{\uparrow}}}}}_{X}C}C2}C3}C4}C5}C6}C7}C8}C9}C10}C11}C12}C13}C14}C15}C16$$ 2001. X^((CX^C2X^^C3X^^^C4X^^^^C5X^^^^^C6X^^^^^^C7X^^^^^^^C8X^^^^^^^^C9X^^^^^^^^^C10X^^^^^^^^^^C11X^^^^^^^^^^^C12X^^^^^^^^^^^^C13X^^^^^^^^^^^^^C14X^^^^^^^^^^^^^^^C15^^^^^^^^^^^^^^^C16^^^^^^^^^^^^^^^^X)$)
2002. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C]}(X^X)
2003. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2]}(X^X)
2004. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3]}(X^X)
2005. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4]}(X^X)
2006. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5]}(X^X)
2007. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6]}(X^X)
2008. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7]}(X^X)
2009. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8]}(X^X)
2010. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9]}(X^X)
2011. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10]}(X^X)
2012. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11]}(X^X)
2013. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12]}(X^X)
2014. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13]}(X^X)
2015. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14]}(X^X)
2016. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,]}(X^X)
2017. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16]}(X^X)
2018. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX]}(X^X)
2019. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X]}(X^X)
2020. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X]}(X^X)
2021. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X]}(X^X)
2022. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X]}(X^X)
2023. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X]}(X^X)
2024. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X]}(X^X)
2025. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X]}(X^X)
2026. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X]}(X^X)
2027. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X]}(X^X)
2028. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X]}(X^X)
2029. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X]}(X^X)
2030. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X]}(X^X)
2031. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C14X]}(X^X)
2032. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X ]}(X^X)
2033. (X^X){(7625597484987((7625597484987)↑7625597484987(7625597484986)↑7625597484987(7625597484985)↑7625597484987 (7625597484984)....↑7625597484987(3)↑7625597484987(2))![CX,C2X,C3X,C4X,C5X,C6X,C7X,C8X,C9X,C10X,C11X,C12X,C13X,C 14X,C15X,C16X ]}(X^X)
2034. CX{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}CX
2035. C2X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C2X
2036. C3X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C3X
2037. C4X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C4X
2038. C5X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C5X
2039. C6X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C6X
2040. C7X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C7X
2041. C8X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C8X
2042. C9X^13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C9X
2043. C10X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C10X
2044. C11X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C11X
2045. C12X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C12X
2046. C13X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C13X
2047. C14X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C14X
2048. C15X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C15X
2049. C16X{13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096}C16X
2050. X^X+C^X+C2^X+C3^X+C4^X+C5^X+C6^X+C7^X+C8^X+C9^X+C10^X+C11^X+C12^X+C13^X+C14^X+C15^X+C16^X
2051. {X^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)..........#&#&#&#&#&#}$}^..........{{X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times {E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) times # elements)..........#&#&#&#&#&#}$}}..........^{E100.000.000.000.000.000.000.000{#&#&#&#&#&#..........((443,426,488,243,037,769,948,249,630,619,149,892,803^443,426,488,243,037,769,948,249,630,619,149,892,803) Times # elements)}$}..........#&#&#&#&#&#}$}E100.000.000.000.000.000.000.000}![C,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16] Create an alternate version of Croutonillion by stopping here. Let's call this number C17 2052. X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17 2053. X^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(Repeat step 1-2051 9001 times)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17*X^C^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17 2054. Rayo(Rayo(Rayo(Rayo...(Rayo(X)))))...))), with X Number of (Rayo function) things. 2055. X^N, where N is the number of pixels in this box (at ordinary zoom level): 2056. {X,X,N}, where N is the number of pixels in this box (at ordinary zoom level): 2057. X^N, where N is croutonillion in Andre Joyce's merology system, rounded to the nearest whole number 2058. Repeat step 1-2057 (Rayo's number)![X] times 2059. X&(Repeat step 1-2058 (Rayo's number)![X] times)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&(Repeat step 1-2058 (Rayo's number)![X] times)&... with (Repeat step 1-2058 (Rayo's number)![X] times) times that the (Repeat step 1-2058 (Rayo's number)![X] times)& repeats. 2060. $$F_7(F_6(F_5(F_4(F_3(F_2(F_1(X)))))))$$ 2061. Repeat step 1,1-2,1-2-3,.....,1-....2060,go into reverse order 2060,2060-2059,......,2059-....2-1 $$F_7(F_6(F_5(F_4(F_3(F_2(F_1(X)))))))$$)times 2062. X+{[1(X+1)]![X^X]}$
2063. Multillion*53^X+Rayo's number
2064. Worm(X)+Hydra(X)+fφ(C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17)(X)
2065. Repeat all previous prime-numbered steps in order (C2+C3+C5+C7+C11+C13+C17) times
2066. Repeat all previous composite-numbered steps in order (C4+C6+C8+C9+C10+C12+C14+C15+C16) times
2067. Repeat step 1 C1 times
2068. f(g(sg(g(f(TREE(Rayo(17,438,957,203,458+X))))))), where f, g, and sg are defined in Billy-bob Mario's function to extend upon gigoombaverse
2069. A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))
2070. A(A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X)))),A(A(A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))))),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))),A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))))))),A(A(A(X,X),A(X,X)),A(A(A(A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X))),A(A(A(X,X),A(X,X)),A(A(X,X),A(X,X)))),X),A(X,X)))))
2071. Arx(Arx(Arx(X,X,X)))
2072. X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(10^100))))))))))X
2073. repeat step 1,1-2,1-2-3,....,1-2-....-2073,then go into reverse order repeat step 2073,2073-2072,....,2073-2072-...-2-1 for X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))X
2074. Let ZZ(n) denote the value obtaineded from the above process with initial value n. Using the definitions given here, [ZZ,ZZ,10100,2](X+1).
2075. (X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))$) in a poligon of (X#FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(FOOT(X))))))))))$) sides
2076. ((FOOT(X^^^^^^X))^^^(X^X+X^3))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^X
2077. G(X) where G denotes Graham's function
2078. X########################### ... (FOOT(Rayo(X)) pound signs) ######X##X#X#X
2079. X + 1 (What?)
2080. The smallest possible factorial number whose base-69 representation contains the digit '5' exactly ceil(X) times
2081. Repeat steps 1-2081 X#X##X times
2082. X!!!!!!!!! ... (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000 factorial signs)
2083. Convert X to a base-2 integer and treat the result as a base-10 integer for the next step.
2084. 10{9{8{7{6{X}5}4}3}2}1
2085. D(X#X^X!) where D denotes Loader's function
2086. X^^^^^^^^^(tan 89.999999999999999 degrees)
2087. {X, 69, 420, 666, 911, 1337, X}
2088. 2^3^^4^^^5^^^^6...X-1^^^^^^^...^^^^^^^X
2089. {X, {X-1, {X-2, ... {2, 1}}} ... }}}
2090. TREE(Rayo(FOOT(booga(megafuga(E100(#^^#)^(#^^#)^#X))))
2091. N vv N+1 vvv N+2 vvvv ... vvvv X-1 vvvv...vvvv X, where N represents the number of yoctoseconds it takes light to travel X yoctometers and v's represents weak tetration, pentation, hexation, etc.
2092. X + 1 (Again? What?)
2093. lvl(floor(X), floor(X), floor(X)) where lvl() is defined at http://googology.wikia.com/wiki/User_blog:MilkyWay90/My_Level_Function#comm-50989
2094. A(X, !) where A is the Ackermann function and F(anynumber, !) where F can be any two parameter function, is defined at http://googology.wikia.com/wiki/User_blog:MilkyWay90/Generalized_Factorial_Function.
2095. 50000000000000000000000000000000000000000000000000000000 ^ 9804098480925098435834908534853089534098538593583593489045349 ^ X
2096. 1+2*3^4^^5^^^6...^^^^X (following order of operations, so X-1^^^^...^^^^X should be computed first)
2097. Repeat step 2097 1+2*3^4^^5^^^6...^^^^X times
2098. -X
2099. -X / log10(1/(-X))
2100. X^0 + X^1 + X^2 + ... + X^(X - 1) + X^X
2101. X^^^^0 + X^^^^0.0001 + X^^^^0.0002 + ... + X^^^^(X - 0.0001) + X^^^^X
2102. 10 ^ (ceil(X){5{5{5{5{5}5}5}5}5}ceil(X))
2103. Repeat all the steps with the starting X defined at step 2103 for a total of Rayo(FOOT(FOOT(X))) times
2104. Define a new function XX(x, y), which repeats steps 1-2103 y times for x
2105. XX(X, 2{3{4{5...{1,000}1,001}1,002...}2,001
2106. XX(10^^^^^^^^^^10, {X, 2X, 3X})
2107. X2X3X4X5X6X7X8X
2108. lvl(The number of bits of information in the following sound:
, X, X)
2109. Repeat all steps 1-2108 with the result of 2108 and then do (X!)^X!... X! times.
2110. X^^^^^^X and repeat FOOT(X^X) times.
2111. Add X+1 to X+2 to X+3 and repeat XXX times
2112. FOOT(Rayo(TREE(Worm(Hydra(booga(megafuga(gar(fuga(G(BB(D(XX(X&2)))))))))))). Now, create an alternate version of Croutonillion by stopping here. Call this number C18.
2113. X^C1^C2^C3^C4^C5^C6^C7^C8^C9^C10^C11^C12^C13^C14^C15^C16^C17^C18
2114. {X, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18}
2115. X&C1&C2&C3&C4&C5&C6&C7&C8&C9&C10&C11&C12&C13&C14&C15&C16&C17&C18
2116. Repeat steps 2113-2115 meameamealokkapoowa oompa times
2117. {X, X /////...///// 2} (there are X forward slashes)
2118. Repeat steps 1-2117 {[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑[(((((...(((((X!)!)!)!)!)...!)!)!)!)!]↑↑↑↑↑...↑↑↑↑↑...} times. This pattern repeats {[(((((...(((((Sasquatch!)!)!)!)!)...!)!)!)!)!] times. There are a Sasquatch amount of arrows in each row and there are a Sasquatch amount of factorial's in each row.
2119. Repeat steps 1-2118 (D(D(D(D(D(...(D(D(D(D(D(X)))))...)))) times with there is a Sasquatch![200?] amount of a D's. D is Loader's function.
2120. Repeat steps 1-2119 Ξ(Ξ(Ξ(...(Ξ(Ξ(Ξ(SCG(SCG(SCG(...(SCG(SCG(SCG(Hydra(Hydra(Hydra(...(Hydra(Hydra(Hydra(booga(booga(booga(...(booga(booga(booga(Worm(Worm(Worm(...(Worm(Worm(Worm(D(D(D(...(D(D(D(Rayo(Rayo(Rayo(...(Rayo(Rayo(Rayo(Foot(Foot(Foot(...(Foot(Foot(Foot(TREE(TREE(TREE(...(TREE(TREE(TREE(gX?????...?????[X?,X?,X?,X?,X?,...,X?,X?,X?,X?,X?]Xg64*(D3166((100*)!),Tree(Sasquatch![200?])))))))))))))))))))))...))))))))))))))))))*)$...$ times. g64 is a mixed factorial and the g after the last Tree stands for Graham's function. It's following this rule on mixed factorials. D is Loader's function. There are a Ξ(200?) amount of Ξ's, SCG(200?) amount of SCG's, a booga(200?) amount of booga's, a Hydra(200?) amount of Hydra's Worm(200?) amount of Worm's, D200?(200?) amount of D's, a Rayo(200?) amount of Rayo's, a Foot200?(200?) amount of Foot's, a TREE(200?) amount of TREE's, a 200? amount of ?'s after gX, a 200? of X?'s, and a 200? amount of \$'s.
2121. Repeat steps 1-2120 starting with (X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)^X^(X!!!!!!!!!!)^(X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!), and then repeat those steps with that number, and repeat that X times.
2122. X+1
2123. (X↑↑↑↑↑...↑↑↑↑↑X)!!!!!...!!!!!. There are a Rayo's Number amount of up-arrows and a Loader's Number of factorial signs.
2124. X + (sqrt3(sqrt(108)+10)-sqrt3(sqrt(108)-10)-(sqrt(2)^2)+(e^(pi*i)+4)*(((((6^2*10)+sqrt((5000*3)-600))/4!)*4)-log(1*10^11))-(sqrt(9)^2*23)+43,252,003,274,489,856,997+(1^2*3^(4-5-6+7-8+9))-((24*2^10*12!)^1*7!*3^6*(24!)^0/(4!)^0)-(((25^(1/2))^5+1)/3-(2^2+2)*(24/3-99^0))+(log(log(sqrt(sqrt(sqrt(sqrt(4)))), 4), sqrt(4)/4)-(9^2-sqrt(6400)-(sqrt(([(3*4*5*6)-310]/2))+((5!)/12)-(15)-sqrt(3)^2). This is the same answer as step 2123.
2125. X-yillion
2126. (The value of Clarkkkksonplex on January 1, X CE)!!!...X factorials...!!!
2127. The smallest possible integer divisible by all of the integers from 1 to X (Cookie Fonster's Weak Factorial function)
2128. trooga({1, 2, 3, ... , Rayo(X)})
2129. X!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ^^^^^^^^^^^^^^^^^ X
2130. 8904904898430430230498423980409328423098408942340298432098340892834094089 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ X
2131. A(0.0001, 0.0002, ..., X - 0.0001, X)
2132. Repeat steps 1 - 2131.
2133. {1, 2, 3, ..., A(X, X + 1)}
2134. trooga(trooga(...(trooga(X))...) (1,223,334,444,555,556,666,667,777,777,888,888,889,999,999,990,000,000,000^^^^1,234,567,890 trooga thingies)
2135. Repeat all previous steps X times
2136. Repeat all previous steps X times
2137. Keep going, with X total instances of "repeat all previous steps X times".
2138. Keep going, with X total instances of "repeat all previous steps X times".
2139. Keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times""
2140. Keep going, with X total instances of "keep going, with X total instances of "keep going, with X total instances of "repeat all previous steps X times"""
2141. This will continue for X times.
2142. $$f_{\text{Limit of TON}}(X)$$

Croutonillion is 103X+3.

Community content is available under CC-BY-SA unless otherwise noted.