Not to be confused with triahectillion.

Triohectillion is equal to \(10^{3\cdot10^{309} + 3}\).[1] It is defined using Sbiis Saibian's generalization of Jonathan Bowers' -illion system.

Approximations

Notation Lower bound Upper bound
Arrow notation \(1000\uparrow(1+10\uparrow309)\)
Down-arrow notation \(1000\downarrow\downarrow104\) \(514\downarrow\downarrow115\)
Steinhaus-Moser Notation 142[3][3] 143[3][3]
Copy notation 2[2[310]] 3[3[310]]
H* function H(H(102))
Taro's multivariable Ackermann function A(3,A(3,1026)) A(3,A(3,1027))
Pound-Star Notation #*((1))*((1))*9 #*((1))*((2))*9
BEAF {1000,1+{10,309}}
Hyper-E notation E(3+3E309)
Bashicu matrix system (0)(1)[32] (0)(1)[33]
Hyperfactorial array notation (170!)! (171!)!
Fast-growing hierarchy \(f_2(f_2(1019))\) \(f_2(f_2(1020))\)
Hardy hierarchy \(H_{\omega^22}(1019)\) \(H_{\omega^22}(1020)\)
Slow-growing hierarchy \(g_{\omega^{\omega^{\omega^23+9}3+3}}(10)\)

Sources

Community content is available under CC-BY-SA unless otherwise noted.