10,965 Pages

The trigrand kilohyperfaxul is equal to $$a_\text{bigrand kilohyperfaxul}$$, where $$a_n$$ = $$a_{n-1}![1]$$ and $$a_0 = 200![1]$$, using Hyperfactorial Array Notation. The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on Latin prefix "tri-" and the number "grand kilohyperfaxul".

Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm E10\#\#201\#(\textrm E10\#\#201\#2)\#4$$
Chained arrow notation $$10 \rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow 201))\rightarrow 2) \rightarrow 2) \rightarrow 2$$
BEAF $$\{10,\{10,\{10,\{10,198,\{10,198,201\}\},1,2\},1,2\},1,2\}$$
Fast-growing hierarchy $$f_{\omega+1}(f_{\omega+1}(f_{\omega+1}(f_{\omega}(f_{\omega}(202)))))$$
Hardy hierarchy $$H_{(\omega^{\omega+1})3+(\omega^{\omega})2}(202)$$
Slow-growing hierarchy (using this system of fundamental sequences) $$g_{\Gamma_{\Gamma_{\Gamma_{\varphi(\varphi(200,0),0)}}}}(200)$$