11,329
pages

Trigrand Megahugexul is equal to ((...((200![200(1)200])![200(1)200])![200(1)200]...)![200(1)200])![200(1)200] (with Bigrand Megahugexul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on Latin prefix "tri-" and the number "grand Megahugexul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,\{200,\{200,4,201[1[1\neg3]200]2\},201[1[1\neg3]200]2\} \\ ,201[1[1\neg3]200]2\},201[1[1\neg3]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,\{200,\{200,4,201[1[1/2\sim2]200]2\},201[1[1/2\sim2]200]2\} \\ ,201[1[1/2\sim2]200]2\},201[1[1/2\sim2]200]2\}$$
BEAF $$\{200,\{200,\{200,\{200,4,201(\{X,X*199,1,2\})2\},201(\{X,X*199,1,2\})2\} \\ ,201(\{X,X*199,1,2\})2\},201(\{X,X*199,1,2\})2\}$$[2]
Fast-growing hierarchy (with this system of fundamental sequences) $$f_{\Gamma_{198}+200}^3(f_{\Gamma_{198}+199}^3(200))$$
Hardy hierarchy (with this system of fundamental sequences) $$H_{\Gamma_{198}\omega^{200}3+\Gamma_{198}\omega^{199}3}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2+\varphi(\Omega_2,199)+200,\theta(\Omega_2+\varphi(\Omega_2,199)+200,\theta(\Omega_2+\varphi(\Omega_2,199)+200,\vartheta(\Omega_2+\varphi(\Omega_2,199)+200))))}(3)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.