11,327
pages

Trigrand Kilogiaxul is equal to (...((200![200])![200])![200]...)![200] (with bigrand Kilogiaxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Etymology

The name of this number is based on prefix "tri-" and the number "grand Kilogiaxul".

## Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm E200\#\#200\#\#200\#(\textrm E200\#\#200\#\#200\#2)\#3$$
Chained arrow notation $$200\rightarrow200\rightarrow(200\rightarrow200\rightarrow(200\rightarrow200\rightarrow \\ (200\rightarrow200\rightarrow3\rightarrow201)\rightarrow201)\rightarrow201)\rightarrow201$$
BEAF $$\{200,\{200,\{200,\{200,3,200,2\},200,2\},200,2\},200,2\}$$
Fast-growing hierarchy $$f_{\omega+200}(f_{\omega+200}(f_{\omega+200}(f_{\omega+199}(f_{\omega+199}(200)))))$$
Hardy hierarchy $$H_{\omega^{\omega+200}3+\omega^{\omega+199}2}(200)$$
Slow-growing hierarchy (using this system of fundamental sequences) $$g_{\varphi(1,199,\varphi(1,199,\varphi(1,199,\varphi(1,198,\varphi(1,198,0)))))}(200)$$