11,329
pages

Trigrand Kilodestruxul is equal to (...((200![200(200)200])![200(200)200])![200(200)200]...)![200(200)200] (with Bigrand Kilodestruxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on prefix "tri-" and the number "Grand Kilodestruxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,\{200,\{200,3,201[1[1\neg202]200]2\} \\ ,201[1[1\neg202]200]2\},201[1[1\neg202]200]2\} \\ ,201[1[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,\{200,\{200,3,201[1[1/201\sim2]200]2\}, \\ 201[1[1/201\sim2]200]2\},201[1[1/201\sim2]200]2\} \\ ,201[1[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\theta(\Omega^{200},198)+200}^3(f_{\theta(\Omega^{200},198)+199}^2(200))$$
Hardy hierarchy $$H_{\theta(\Omega^{200},198)\omega^{200}3+\theta(\Omega^{200},198)\omega^{199}2}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+200,\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+200,} \\ _{\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+200,\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+199,} \\ _{\vartheta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+199)))))}(200)$$