Tetretriacontillion is equal to \(10^{3\times 10^{102}+3}\) or \(10^{3\text{ tretrigintillion }3}\).[1] It is defined using Sbiis Saibian's generalization of Jonathan Bowers' -illion system.


Notation Lower bound Upper bound
Arrow notation \(1000\uparrow(1+10\uparrow102)\)
Down-arrow notation \(1000\downarrow\downarrow35\) \(414\downarrow\downarrow40\)
Steinhaus-Moser Notation 57[3][3] 58[3][3]
Copy notation 2[2[103]] 3[3[103]]
H* function H(H(33))
Taro's multivariable Ackermann function A(3,A(3,339)) A(3,A(3,340))
Pound-Star Notation #*((1))*(9,5,1,6,5)*7 #*((1))*(0,6,1,6,5)*7
BEAF {1000,1+{10,102}}
Hyper-E notation E(3+3E102)
Bashicu matrix system (0)(1)[18] (0)(1)[19]
Hyperfactorial array notation (70!)! (71!)!
Fast-growing hierarchy \(f_2(f_2(333))\) \(f_2(f_2(334))\)
Hardy hierarchy \(H_{\omega^22}(333)\) \(H_{\omega^22}(334)\)
Slow-growing hierarchy \(g_{\omega^{\omega^{\omega^2+2}3+3}}(10)\)


Community content is available under CC-BY-SA unless otherwise noted.