11,329
pages

The tethraterli-godgathor is equal to E100(#^^#)^(#^^#*#^^#*#^^#*#^#)100 in Extended Cascading-E Notation.[1] The term was coined by Sbiis Saibian.

## Etymology

The name of this number is based on the number tethraduli-godgathor and the Latin prefix "tetra-", meaning 4.

## Approximations in other notations

Notation Approximation
BEAF $$\{100,100((X \uparrow\uparrow X)^4*X^{X}) 2\}$$[2]
Bird's array notation $$\{100,100 [1,2[1\backslash 2]4 \backslash 2] 2\}$$
Hyperfactorial array notation $$100![1,[1,[1,1,2],4,1,2],[1],1,2]$$
Fast-growing hierarchy $$f_{\varepsilon_0^{\varepsilon_0^3\omega^{\omega}}}(100)$$
Hardy hierarchy $$H_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^3\omega^{\omega}}}}(100)$$
Slow-growing hierarchy $$g_{\vartheta(\varepsilon_{\Omega 2}^{\varepsilon_{\Omega 2}^3\Omega^\omega})}(100)$$

## Sources

1. Saibian, Sbiis. 4.3.7 Extended Cascading-E Numbers Part IOne to Infinity. Retrieved 2016-03-11.
2. Using particular notation $$\{a,b (A) 2\} = A\ \&\ a$$ with prime b.