Advertisement
11,328
pages

The tethrahepton regiment is a series of numbers from E100#^^#^#7 to E100#^^(#^8)90 defined using Extended Cascading-E Notation (i.e. beginning from tethrahepton and up to enenintastaculated-tethrahepton).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Tethrahexon regiment Tethra-ogdon regiment

## List of numbers of the regiment

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation) Hardy hierarchy (approximation)
tethrahepton, tethrahepteract E100#^^#^#7 $$f_{\varphi(7,0)}(100)$$ $$H_{\varphi(7,0)}(100)$$
grand tethrahepton E100#^^#^(7)100#2 $$f_{\varphi(7,0)}^2(100)$$ $$H_{\varphi(7,0)\times 2}(100)$$
grangol-carta-tethrahepton E100#^^#^(7)100#100 $$f_{\varphi(7,0)+1}(100)$$ $$H_{\varphi(7,0)\times\omega}(100)$$
grand grangol-carta-tethrahepton E100#^^#^(7)100#100#2 $$f_{\varphi(7,0)+1}^2(100)$$ $$H_{\varphi(7,0)\times\omega 2}(100)$$
godgahlah-carta-tethrahepton E100#^^#^(7)100#^#100 $$f_{\varphi(7,0)+\omega^\omega}(100)$$ $$H_{\varphi(7,0)\times \omega^{\omega^\omega}}(100)$$
tethrathoth-carta-tethrahepton E100#^^#^(7)100#^^#100 $$f_{\varphi(7,0)+\varepsilon_0}(100)$$ $$H_{\varphi(7,0)\times \varepsilon_0}(100)$$
tethracross-carta-tethrahepton E100#^^#^(7)100#^^##100 $$f_{\varphi(7,0)+\zeta_0}(100)$$ $$H_{\varphi(7,0)\times\zeta_0}(100)$$
tethracubor-carta-tethrahepton E100#^^#^(7)100#^^###100 $$f_{\varphi(7,0)+\eta_0}(100)$$ $$H_{\varphi(7,0)\eta_0}(100)$$
tethrateron-carta-tethrahepton E100#^^#^(7)100#^^####100 $$f_{\varphi(7,0)+\varphi(4,0)}(100)$$ $$H_{\varphi(7,0)\varphi(4,0)}(100)$$
tethrapeton-carta-tethrahepton E100#^^#^(7)100#^^#^(5)100 $$f_{\varphi(7,0)+\varphi(5,0)}(100)$$ $$H_{\varphi(7,0)\times \varphi(5,0)}(100)$$
tethrahexon-carta-tethrahepton E100#^^#^(7)100#^^#^(6)100 $$f_{\varphi(7,0)+\varphi(6,0)}(100)$$ $$H_{\varphi(7,0)\times \varphi(6,0)}(100)$$
tethrahepton-by-deuteron E100#^^#^(7)100#^^#^(7)100 $$f_{\varphi(7,0)2}(100)$$ $$H_{\varphi(7,0)^2}(100)$$
tethrahepton-by-triton E100#^^#^(7)100#^^#^(7)100#^^#^(7)100

= E100(#^^#^7)*#4

$$f_{\varphi(7,0)\times 3}(100)$$ $$H_{\varphi(7,0)^3}(100)$$
tethrahepton-by-teterton E100(#^^#^7)*#5 $$f_{\varphi(7,0)\times 4}(100)$$ $$H_{\varphi(7,0)^4}(100)$$
tethrahepton-by-pepton E100(#^^#^7)*#6 $$f_{\varphi(7,0)\times 5}(100)$$ $$H_{\varphi(7,0)^5}(100)$$
tethrahepton-by-exton E100(#^^#^7)*#7 $$f_{\varphi(7,0)\times 6}(100)$$ $$H_{\varphi(7,0)^6}(100)$$
tethrahepton-by-epton E100(#^^#^7)*#8 $$f_{\varphi(7,0)\times 7}(100)$$ $$H_{\varphi(7,0)^7}(100)$$
tethrahepton-by-ogdon E100(#^^#^7)*#9 $$f_{\varphi(7,0)\times 8}(100)$$ $$H_{\varphi(7,0)^8}(100)$$
tethrahepton-by-enton E100(#^^#^7)*#10 $$f_{\varphi(7,0)\times 9}(100)$$ $$H_{\varphi(7,0)^9}(100)$$
tethrahepton-by-dekaton E100(#^^#^7)*#11 $$f_{\varphi(7,0)\times {10}}(100)$$ $$H_{\varphi(7,0)^{10}}(100)$$
tethrahepton-by-hyperion E100(#^^#^7)*#100 $$f_{\varphi(7,0)\times {\omega}}(100)$$ $$H_{\varphi(7,0)^{\omega}}(100)$$
tethrahepton-by-godgahlah E100(#^^#^7)*#^#100 $$f_{\varphi(7,0)\times {\omega^{\omega}}}(100)$$ $$H_{\varphi(7,0)^{\omega^\omega}}(100)$$
tethrahepton-by-tethrathoth E100(#^^#^7)*#^^#100 $$f_{\varphi(7,0)\times\varepsilon_0}(100)$$ $$H_{\varphi(7,0)^{\varepsilon_0}}(100)$$
tethrahepton-by-tethracross E100(#^^#^7)*#^^##100 $$f_{\varphi(7,0)\times\zeta_0}(100)$$ $$H_{\varphi(7,0)^{\zeta_0}}(100)$$
tethrahepton-by-tethracubor E100(#^^#^7)*#^^###100 $$f_{\varphi(7,0)\times\eta_0}(100)$$ $$H_{\varphi(7,0)^{\eta_0}}(100)$$
tethrahepton-by-tethrateron E100(#^^#^7)*#^^####100 $$f_{\varphi(7,0)\times\varphi(4,0)}(100)$$ $$H_{\varphi(7,0)^{\varphi(4,0)}}(100)$$
tethrahepton-by-tethrapeton E100(#^^#^7)*#^^#^(5)100 $$f_{\varphi(7,0)\times\varphi(5,0)}(100)$$ $$H_{\varphi(7,0)^{\varphi(5,0)}}(100)$$
tethrahepton-by-tethrahexon E100(#^^#^7)*#^^#^(6)100 $$f_{\varphi(7,0)\times\varphi(6,0)}(100)$$ $$H_{\varphi(7,0)^{\varphi(6,0)}}(100)$$
deutero-tethrahepton E100#^^#^(7)*#^^#^(7)100 $$f_{\varphi(7,0)\times\varphi(7,0)}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)}}(100)$$
trito-tethrahepton E100#^^#^(7)*#^^#^(7)*#^^#^(7)100

=E100(#^^#^7)^#3

$$f_{\varphi(7,0)^3}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^2}}(100)$$
teterto-tethrahepton E100(#^^#^7)^#4 $$f_{\varphi(7,0)^4}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^3}}(100)$$
pepto-tethrahepton E100(#^^#^7)^#5 $$f_{\varphi(7,0)^5}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^4}}(100)$$
exto-tethrahepton E100(#^^#^7)^#6 $$f_{\varphi(7,0)^6}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^5}}(100)$$
epto-tethrahepton E100(#^^#^7)^#7 $$f_{\varphi(7,0)^7}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^6}}(100)$$
ogdo-tethrahepton E100(#^^#^7)^#8 $$f_{\varphi(7,0)^8}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^7}}(100)$$
ento-tethrahepton E100(#^^#^7)^#9 $$f_{\varphi(7,0)^9}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^8}}(100)$$
dekato-tethrahepton E100(#^^#^7)^#10 $$f_{\varphi(7,0)^{10}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^9}}(100)$$
tethraheptonifact E100(#^^#^7)^#100 $$f_{\varphi(7,0)^\omega}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^\omega}}(100)$$
quadratatethrahepton E100(#^^#^7)^##100 $$f_{\varphi(7,0)^{\omega^2}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^2}}}(100)$$
kubikutethrahepton E100(#^^#^7)^###100 $$f_{\varphi(7,0)^{\omega^3}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^3}}}(100)$$
quarticutethrahepton E100(#^^#^7)^####100 $$f_{\varphi(7,0)^{\omega^4}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^4}}}(100)$$
quinticutethrahepton E100(#^^#^7)^#^#5 $$f_{\varphi(7,0)^{\omega^5}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^5}}}(100)$$
sexticutethrahepton E100(#^^#^7)^#^#6 $$f_{\varphi(7,0)^{\omega^6}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^6}}}(100)$$
septicutethrahepton E100(#^^#^7)^#^#7 $$f_{\varphi(7,0)^{\omega^7}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^7}}}(100)$$
octicutethrahepton E100(#^^#^7)^#^#8 $$f_{\varphi(7,0)^{\omega^8}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^8}}}(100)$$
nonicutethrahepton E100(#^^#^7)^#^#9 $$f_{\varphi(7,0)^{\omega^9}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^9}}}(100)$$
decicutethrahepton E100(#^^#^7)^#^#10 $$f_{\varphi(7,0)^{\omega^{10}}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^{10}}}}(100)$$
tethrahepton-ipso-godgahlah E100(#^^#^7)^#^#100 $$f_{\varphi(7,0)^{\omega^\omega}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^\omega}}}(100)$$
tethrahepton-ipso-godgathor E100(#^^#^7)^#^#^#100 $$f_{\varphi(7,0)^{\omega^{\omega^\omega}}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^{\omega^\omega}}}}(100)$$
tethrahepton-ipso-godtothol E100(#^^#^7)^#^#^#^#100 $$f_{\varphi(7,0)^{\omega^{\omega^{\omega^\omega}}}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\omega^{\omega^{\omega^\omega}}}}}(100)$$
tethrahepton-ipso-tethrathoth E100(#^^#^7)^#^^#100 $$f_{\varphi(7,0)^{\varepsilon_0}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\varepsilon_0}}}(100)$$
tethrahepton-ipso-tethracross E100(#^^#^7)^#^^##100 $$f_{\varphi(7,0)^{\zeta_0}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\zeta_0}}}(100)$$
tethrahepton-ipso-tethracubor E100(#^^#^7)^#^^###100 $$f_{\varphi(7,0)^{\eta_0}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\eta_0}}}(100)$$
tethrahepton-ipso-tethrateron E100(#^^#^7)^#^^####100 $$f_{\varphi(7,0)^{\varphi(4,0)}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\varphi(4,0)}}}(100)$$
tethrahepton-ipso-tethrapeton E100(#^^#^7)^#^^#^(5)100 $$f_{\varphi(7,0)^{\varphi(5,0)}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\varphi(5,0)}}}(100)$$
tethrahepton-ipso-tethrahexon E100(#^^#^7)^#^^#^(6)100 $$f_{\varphi(7,0)^{\varphi(6,0)}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\varphi(6,0)}}}(100)$$
dutetrated-tethrahepton E100(#^^#^7)^(#^^#^7)100 $$f_{\varphi(7,0)^{\varphi(7,0)}}(100)$$ $$H_{\varphi(7,0)^{\varphi(7,0)^{\varphi(7,0)}}}(100)$$
tritetrated-tethrahepton E100(#^^#^7)^(#^^#^7)^(#^^#^7)100 $$f_{\varphi(7,0)\uparrow\uparrow 3}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 4}(100)$$
quadratetrated-tethrahepton E100(#^^#^7)^(#^^#^7)^(#^^#^7)^(#^^#^7)100

= E100(#^^#^7)^^#4

$$f_{\varphi(7,0)\uparrow\uparrow 4}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 5}(100)$$
quinquatetrated-tethrahepton E100(#^^#^7)^^#5 $$f_{\varphi(7,0)\uparrow\uparrow 5}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 6}(100)$$
sexatetrated-tethrahepton E100(#^^#^7)^^#6 $$f_{\varphi(7,0)\uparrow\uparrow 6}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 7}(100)$$
septatetrated-tethrahepton E100(#^^#^7)^^#7 $$f_{\varphi(7,0)\uparrow\uparrow 7}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 8}(100)$$
octatetrated-tethrahepton E100(#^^#^7)^^#8 $$f_{\varphi(7,0)\uparrow\uparrow 8}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow 9}(100)$$
nonatetrated-tethrahepton E100(#^^#^7)^^#9 $$f_{\varphi(7,0)\uparrow\uparrow 9}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow {10}}(100)$$
decatetrated-tethrahepton E100(#^^#^7)^^#10 $$f_{\varphi(7,0)\uparrow\uparrow {10}}(100)$$ $$H_{\varphi(7,0)\uparrow\uparrow {11}}(100)$$
terrible tethrahepton E100(#^^#^7)^^#100 $$f_{\varepsilon_{\varphi(7,0)+1}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+1}}(100)$$
terrible terrible tethrahepton E100((#^^#^7)^^#)^^#100 $$f_{\varepsilon_{\varphi(7,0)+2}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+2}}(100)$$
three-ex-terrible tethrahepton E100(#^^#^7)^^#>(3)100 $$f_{\varepsilon_{\varphi(7,0)+3}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+3}}(100)$$
four-ex-terrible tethrahepton E100(#^^#^7)^^#>(4)100 $$f_{\varepsilon_{\varphi(7,0)+4}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+4}}(100)$$
five-ex-terrible tethrahepton E100(#^^#^7)^^#>(5)100 $$f_{\varepsilon_{\varphi(7,0)+5}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+5}}(100)$$
six-ex-terrible tethrahepton E100(#^^#^7)^^#>(6)100 $$f_{\varepsilon_{\varphi(7,0)+6}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+6}}(100)$$
seven-ex-terrible tethrahepton E100(#^^#^7)^^#>(7)100 $$f_{\varepsilon_{\varphi(7,0)+7}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+7}}(100)$$
eight-ex-terrible tethrahepton E100(#^^#^7)^^#>(8)100 $$f_{\varepsilon_{\varphi(7,0)+8}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+8}}(100)$$
nine-ex-terrible tethrahepton E100(#^^#^7)^^#>(9)100 $$f_{\varepsilon_{\varphi(7,0)+9}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+9}}(100)$$
ten-ex-terrible tethrahepton E100(#^^#^7)^^#>(10)100 $$f_{\varepsilon_{\varphi(7,0)+10}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+10}}(100)$$
territerated tethrahepton E100(#^^#^7)^^#>#100 $$f_{\varepsilon_{\varphi(7,0)+\omega}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\omega}}(100)$$
godgahlah-turreted-territethrahepton E100(#^^#^7)^^#>#^#100 $$f_{\varepsilon_{\varphi(7,0)+\omega^\omega}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\omega^\omega}}(100)$$
tethrathoth-turreted-territethrahepton E100(#^^#^7)^^#>#^^#100 $$f_{\varepsilon_{\varphi(7,0)+\varepsilon_0}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varepsilon_0}}(100)$$
tethracross-turreted-territethrahepton E100(#^^#^7)^^#>#^^##100 $$f_{\varepsilon_{\varphi(7,0)+\zeta_0}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\zeta_0}}(100)$$
tethracubor-turreted-territethrahepton E100(#^^#^7)^^#>#^^###100 $$f_{\varepsilon_{\varphi(7,0)+\eta_0}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\eta_0}}(100)$$
tethrateron-turreted-territethrahepton E100(#^^#^7)^^#>#^^####100 $$f_{\varepsilon_{\varphi(7,0)+\varphi(4,0)}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varphi(4,0)}}(100)$$
tethrapeton-turreted-territethrahepton E100(#^^#^7)^^#>#^^#^(5)100 $$f_{\varepsilon_{\varphi(7,0)+\varphi(5,0)}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varphi(5,0)}}(100)$$
tethrahexon-turreted-territethrahepton E100(#^^#^7)^^#>#^^#^(6)100 $$f_{\varepsilon_{\varphi(7,0)+\varphi(6,0)}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varphi(6,0)}}(100)$$
tethrahepton-turreted-territethrahepton E100(#^^#^7)^^#>#^^#^(7)100 $$f_{\varepsilon_{\varphi(7,0)+\varphi(7,0)}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varphi(7,0)}}(100)$$
dustaculated-territethrahepton E100(#^^#^7)^^#>(#^^#^7)^^#100 $$f_{\varepsilon_{\varphi(7,0)+\varepsilon_{\varphi(7,0)+1}}}(100)$$ $$H_{\varepsilon_{\varphi(7,0)+\varepsilon_{\varphi(7,0)+1}}}(100)$$
tristaculated-territethrahepton E100(#^^#^7)^^#>(#^^#^7)^^#>(#^^#^7)^^#100

= E100(#^^#^7)^^##3

$$f_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(7,0)+1}}}}(100)$$ $$H_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(7,0)+1}}}}(100)$$
tetrastaculated-territethrahepton E100(#^^#^7)^^##4 $$f_{\zeta_{\varphi(7,0)+1}[4]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[4]}(100)$$
pentastaculated-territethrahepton E100(#^^#^7)^^##5 $$f_{\zeta_{\varphi(7,0)+1}[5]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[5]}(100)$$
hexastaculated-territethrahepton E100(#^^#^7)^^##6 $$f_{\zeta_{\varphi(6,0)+1}[6]}(100)$$ $$H_{\zeta_{\varphi(6,0)+1}[6]}(100)$$
heptastaculated-territethrahepton E100(#^^#^7)^^##7 $$f_{\zeta_{\varphi(7,0)+1}[7]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[7]}(100)$$
ogdastaculated-territethrahepton E100(#^^#^7)^^##8 $$f_{\zeta_{\varphi(7,0)+1}[8]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[8]}(100)$$
ennastaculated-territethrahepton E100(#^^#^7)^^##9 $$f_{\zeta_{\varphi(7,0)+1}[9]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[9]}(100)$$
dekastaculated-territethrahepton E100(#^^#^7)^^##10 $$f_{\zeta_{\varphi(7,0)+1}[10]}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}[10]}(100)$$
terrisquared-tethrahepton E100(#^^#^7)^^##100 $$f_{\zeta_{\varphi(7,0)+1}}(100)$$ $$H_{\zeta_{\varphi(7,0)+1}}(100)$$
two-ex-terrisquared-tethrahepton E100((#^^#^7)^^##)^^##100 $$f_{\zeta_{\varphi(7,0)+2}}(100)$$ $$H_{\zeta_{\varphi(7,0)+2}}(100)$$
three-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(3)100 $$f_{\zeta_{\varphi(7,0)+3}}(100)$$ $$H_{\zeta_{\varphi(7,0)+3}}(100)$$
four-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(4)100 $$f_{\zeta_{\varphi(7,0)+4}}(100)$$ $$H_{\zeta_{\varphi(7,0)+4}}(100)$$
five-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(5)100 $$f_{\zeta_{\varphi(7,0)+5}}(100)$$ $$H_{\zeta_{\varphi(7,0)+5}}(100)$$
six-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(6)100 $$f_{\zeta_{\varphi(7,0)+6}}(100)$$ $$H_{\zeta_{\varphi(7,0)+6}}(100)$$
seven-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(7)100 $$f_{\zeta_{\varphi(7,0)+7}}(100)$$ $$H_{\zeta_{\varphi(7,0)+7}}(100)$$
eight-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(8)100 $$f_{\zeta_{\varphi(7,0)+8}}(100)$$ $$H_{\zeta_{\varphi(7,0)+8}}(100)$$
nine-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(9)100 $$f_{\zeta_{\varphi(7,0)+9}}(100)$$ $$H_{\zeta_{\varphi(7,0)+9}}(100)$$
ten-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>(10)100 $$f_{\zeta_{\varphi(7,0)+{10}}}(100)$$ $$H_{\zeta_{\varphi(7,0)+{10}}}(100)$$
hundred-ex-terrisquared-tethrahepton E100(#^^#^7)^^##>#100 $$f_{\zeta_{\varphi(7,0)+\omega}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\omega}}(100)$$
godgahlah-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^#100 $$f_{\zeta_{\varphi(7,0)+\omega^\omega}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\omega^\omega}}(100)$$
tethrathoth-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^#100 $$f_{\zeta_{\varphi(7,0)+\varepsilon_0}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\varepsilon_0}}(100)$$
tethracross-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^##100 $$f_{\zeta_{\varphi(7,0)+\zeta_0}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\zeta_0}}(100)$$
tethracubor-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^###100 $$f_{\zeta_{\varphi(7,0)+\eta_0}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\eta_0}}(100)$$
tethrateron-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^####100 $$f_{\zeta_{\varphi(7,0)+\varphi(4,0)}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\varphi(4,0)}}(100)$$
tethrapeton-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^#^(5)100 $$f_{\zeta_{\varphi(7,0)+\varphi(5,0)}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\varphi(5,0)}}(100)$$
tethrahexon-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^#^(6)100 $$f_{\zeta_{\varphi(7,0)+\varphi(6,0)}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\varphi(6,0)}}(100)$$
tethrahepton-turreted-terrisquared-tethrahepton E100(#^^#^7)^^##>#^^#^(7)100 $$f_{\zeta_{\varphi(7,0)+\varphi(7,0)}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\varphi(7,0)}}(100)$$
dustaculated-terrisquared-tethrahepton E100(#^^#^7)^^##>(#^^#^7)^^##100 $$f_{\zeta_{\varphi(7,0)+\zeta_{\varphi(7,0)+1}}}(100)$$ $$H_{\zeta_{\varphi(7,0)+\zeta_{\varphi(7,0)+1}}}(100)$$
tristaculated-terrisquared-tethrahepton E100(#^^#^7)^^##>(#^^#^7)^^##>(#^^#^7)^^##100

= E100(#^^#^7)^^###3

$$f_{\zeta_{\zeta_{\zeta_{\varphi(7,0)+1}}}}(100)$$ $$H_{\zeta_{\zeta_{\zeta_{\varphi(7,0)+1}}}}(100)$$
tetrastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###4 $$f_{\eta_{\varphi(7,0)+1}[4]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[4]}(100)$$
pentastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###5 $$f_{\eta_{\varphi(7,0)+1}[5]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[5]}(100)$$
hexastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###6 $$f_{\eta_{\varphi(7,0)+1}[6]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[6]}(100)$$
heptastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###7 $$f_{\eta_{\varphi(7,0)+1}[7]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[7]}(100)$$
ogdastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###8 $$f_{\eta_{\varphi(7,0)+1}[8]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[8]}(100)$$
ennastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###9 $$f_{\eta_{\varphi(7,0)+1}[9]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[9]}(100)$$
dekastaculated-terrisquared-tethrahepton E100(#^^#^7)^^###10 $$f_{\eta_{\varphi(7,0)+1}[10]}(100)$$ $$H_{\eta_{\varphi(7,0)+1}[10]}(100)$$
terricubed-tethrahepton E100(#^^#^7)^^###100 $$f_{\eta_{\varphi(7,0)+1}}(100)$$ $$H_{\eta_{\varphi(7,0)+1}}(100)$$
two-ex-terricubed-tethrahepton E100((#^^#^7)^^###)^^###100 $$f_{\eta_{\varphi(7,0)+2}}(100)$$ $$H_{\eta_{\varphi(7,0)+2}}(100)$$
three-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(3)100 $$f_{\eta_{\varphi(7,0)+3}}(100)$$ $$H_{\eta_{\varphi(7,0)+3}}(100)$$
four-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(4)100 $$f_{\eta_{\varphi(7,0)+4}}(100)$$ $$H_{\eta_{\varphi(7,0)+4}}(100)$$
five-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(5)100 $$f_{\eta_{\varphi(7,0)+5}}(100)$$ $$H_{\eta_{\varphi(7,0)+5}}(100)$$
six-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(6)100 $$f_{\eta_{\varphi(7,0)+6}}(100)$$ $$H_{\eta_{\varphi(7,0)+6}}(100)$$
seven-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(7)100 $$f_{\eta_{\varphi(7,0)+7}}(100)$$ $$H_{\eta_{\varphi(7,0)+7}}(100)$$
eight-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(8)100 $$f_{\eta_{\varphi(7,0)+8}}(100)$$ $$H_{\eta_{\varphi(7,0)+8}}(100)$$
nine-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(9)100 $$f_{\eta_{\varphi(7,0)+9}}(100)$$ $$H_{\eta_{\varphi(7,0)+9}}(100)$$
ten-ex-terricubed-tethrahepton E100(#^^#^7)^^###>(10)100 $$f_{\eta_{\varphi(7,0)+{10}}}(100)$$ $$H_{\eta_{\varphi(7,0)+{10}}}(100)$$
hundred-ex-terricubed-tethrahepton E100(#^^#^7)^^###>#100 $$f_{\eta_{\varphi(7,0)+\omega}}(100)$$ $$H_{\eta_{\varphi(7,0)+\omega}}(100)$$
godgahlah-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^#100 $$f_{\eta_{\varphi(7,0)+\omega^\omega}}(100)$$ $$H_{\eta_{\varphi(7,0)+\omega^\omega}}(100)$$
tethrathoth-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^#100 $$f_{\eta_{\varphi(7,0)+\varepsilon_0}}(100)$$ $$H_{\eta_{\varphi(7,0)+\varepsilon_0}}(100)$$
tethracross-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^##100 $$f_{\eta_{\varphi(7,0)+\zeta_0}}(100)$$ $$H_{\eta_{\varphi(7,0)+\zeta_0}}(100)$$
tethracubor-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^###100 $$f_{\eta_{\varphi(7,0)+\eta_0}}(100)$$ $$H_{\eta_{\varphi(7,0)+\eta_0}}(100)$$
tethrateron-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^####100 $$f_{\eta_{\varphi(7,0)+\varphi(4,0)}}(100)$$ $$H_{\eta_{\varphi(7,0)+\varphi(4,0)}}(100)$$
tethrapeton-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^#^(5)100 $$f_{\eta_{\varphi(7,0)+\varphi(5,0)}}(100)$$ $$H_{\eta_{\varphi(7,0)+\varphi(5,0)}}(100)$$
tethrahexon-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^#^(6)100 $$f_{\eta_{\varphi(7,0)+\varphi(6,0)}}(100)$$ $$H_{\eta_{\varphi(7,0)+\varphi(6,0)}}(100)$$
tethrahepton-turreted-terricubed-tethrahepton E100(#^^#^7)^^###>#^^#^(7)100 $$f_{\eta_{\varphi(7,0)+\varphi(7,0)}}(100)$$ $$H_{\eta_{\varphi(7,0)+\varphi(7,0)}}(100)$$
dustaculated-terricubed-tethrahepton E100(#^^#^7)^^###>(#^^#^7)^^###100 $$f_{\eta_{\varphi(7,0)+\zeta_{\varphi(7,0)+1}}}(100)$$ $$H_{\eta_{\varphi(7,0)+\zeta_{\varphi(7,0)+1}}}(100)$$
tristaculated-terricubed-tethrahepton E100(#^^#^7)^^###>(#^^#^7)^^###>(#^^#^7)^^###100

= E100(#^^#^7)^^####3

$$f_{\eta_{\eta_{\eta_{\varphi(7,0)+1}}}}(100)$$ $$H_{\eta_{\eta_{\eta_{\varphi(7,0)+1}}}}(100)$$
tetrastaculated-terricubed-tethrahepton E100(#^^#^7)^^####4 $$f_{\varphi(4,\varphi(7,0)+1)[4]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[4]}(100)$$
pentastaculated-terricubed-tethrahepton E100(#^^#^7)^^####5 $$f_{\varphi(4,\varphi(7,0)+1)[5]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[5]}(100)$$
hexastaculated-terricubed-tethrahepton E100(#^^#^7)^^####6 $$f_{\varphi(4,\varphi(7,0)+1)[6]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[6]}(100)$$
heptastaculated-terricubed-tethrahepton E100(#^^#^7)^^####7 $$f_{\varphi(4,\varphi(7,0)+1)[7]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[7]}(100)$$
ogdastaculated-terricubed-tethrahepton E100(#^^#^7)^^####8 $$f_{\varphi(4,\varphi(7,0)+1)[8]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[8]}(100)$$
ennastaculated-terricubed-tethrahepton E100(#^^#^7)^^####9 $$f_{\varphi(4,\varphi(7,0)+1)[9]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[9]}(100)$$
dekastaculated-terricubed-tethrahepton E100(#^^#^7)^^####10 $$f_{\varphi(4,\varphi(7,0)+1)[10]}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)[10]}(100)$$
territesserated-tethrahepton E100(#^^#^7)^^####100 $$f_{\varphi(4,\varphi(7,0)+1)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+1)}(100)$$
two-ex-territesserated-tethrahepton E100((#^^#^7)^^####)^^####100 $$f_{\varphi(4,\varphi(7,0)+2)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+2)}(100)$$
three-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(3)100 $$f_{\varphi(4,\varphi(7,0)+3)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+3)}(100)$$
four-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(4)100 $$f_{\varphi(4,\varphi(7,0)+4)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+4)}(100)$$
five-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(5)100 $$f_{\varphi(4,\varphi(7,0)+5)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+5)}(100)$$
six-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(6)100 $$f_{\varphi(4,\varphi(7,0)+6)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+6)}(100)$$
seven-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(7)100 $$f_{\varphi(4,\varphi(7,0)+7)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+7)}(100)$$
eight-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(8)100 $$f_{\varphi(4,\varphi(7,0)+8)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+8)}(100)$$
nine-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(9)100 $$f_{\varphi(4,\varphi(7,0)+9)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+9)}(100)$$
ten-ex-territesserated-tethrahepton E100(#^^#^7)^^####>(10)100 $$f_{\varphi(4,\varphi(7,0)+{10})}(100)$$ $$H_{\varphi(4,\varphi(7,0)+{10})}(100)$$
hundred-ex-territesserated-tethrahepton E100(#^^#^7)^^####>#100 $$f_{\varphi(4,\varphi(7,0)+{\omega})}(100)$$ $$H_{\varphi(4,\varphi(7,0)+{\omega})}(100)$$
godgahlah-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>#^#100 $$f_{\varphi(4,\varphi(7,0)+{\omega^\omega})}(100)$$ $$H_{\varphi(4,\varphi(7,0)+{\omega^\omega})}(100)$$
tethrathoth-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>#^^#100 $$f_{\varphi(4,\varphi(7,0)+\varepsilon_0)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\varepsilon_0)}(100)$$
tethracross-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>#^^##100 $$f_{\varphi(4,\varphi(7,0)+\zeta_0)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\zeta_0)}(100)$$
tethracubor-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>#^^###100 $$f_{\varphi(4,\varphi(7,0)+\eta_0)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\eta_0)}(100)$$
tethrateron-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>#^^####100 $$f_{\varphi(4,\varphi(7,0)+\varphi(4,0))}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\varphi(4,0))}(100)$$
tethrapeton-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>(#^^#^5)100 $$f_{\varphi(4,\varphi(7,0)+\varphi(5,0))}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\varphi(5,0))}(100)$$
tethrahexon-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>(#^^#^6)100 $$f_{\varphi(4,\varphi(7,0)+\varphi(6,0))}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\varphi(6,0))}(100)$$
tethrahepton-turreted-territesserated-tethrahepton E100(#^^#^7)^^####>(#^^#^7)100 $$f_{\varphi(4,\varphi(7,0)+\varphi(7,0))}(100)$$ $$H_{\varphi(4,\varphi(7,0)+\varphi(7,0))}(100)$$
dustaculated-territesserated-tethrahepton E100(#^^#^7)^^####>(#^^#^7)^^####100 $$f_{\varphi(4,\varphi(4,\varphi(7,0)+1))}(100)$$ $$H_{\varphi(4,\varphi(4,\varphi(7,0)+1))}(100)$$
tristaculated-territesserated-tethrahepton E100(#^^#^7)^^####>(#^^#^7)^^####>(#^^#^7)^^####100

= E100((#^^#^7)^^#^5)3

$$f_{\varphi(5,\varphi(7,0)+1)[3]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[3]}(100)$$
tetrastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)4 $$f_{\varphi(5,\varphi(7,0)+1)[4]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[4]}(100)$$
pentastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)5 $$f_{\varphi(5,\varphi(7,0)+1)[5]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[5]}(100)$$
hexastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)6 $$f_{\varphi(5,\varphi(7,0)+1)[6]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[6]}(100)$$
heptastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)7 $$f_{\varphi(5,\varphi(7,0)+1)[7]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[7]}(100)$$
ogdastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)8 $$f_{\varphi(5,\varphi(7,0)+1)[8]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[8]}(100)$$
ennastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)9 $$f_{\varphi(5,\varphi(7,0)+1)[9]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[9]}(100)$$
dekastaculated-territesserated-tethrahepton E100((#^^#^7)^^#^5)10 $$f_{\varphi(5,\varphi(7,0)+1)[10]}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)[10]}(100)$$
terripenterated-tethrahepton E100((#^^#^7)^^#^5)100 $$f_{\varphi(5,\varphi(7,0)+1)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+1)}(100)$$
two-ex-terripenterated-tethrahepton E100(((#^^#^7)^^#^5)^^#^5)100 $$f_{\varphi(5,\varphi(7,0)+2)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+2)}(100)$$
three-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(3)100 $$f_{\varphi(5,\varphi(7,0)+3)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+3)}(100)$$
four-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(4)100 $$f_{\varphi(5,\varphi(7,0)+4)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+4)}(100)$$
five-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(5)100 $$f_{\varphi(5,\varphi(7,0)+5)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+5)}(100)$$
six-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(6)100 $$f_{\varphi(5,\varphi(7,0)+6)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+6)}(100)$$
seven-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(7)100 $$f_{\varphi(5,\varphi(7,0)+7)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+7)}(100)$$
eight-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(8)100 $$f_{\varphi(5,\varphi(7,0)+8)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+8)}(100)$$
nine-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(9)100 $$f_{\varphi(4,\varphi(7,0)+9)}(100)$$ $$H_{\varphi(4,\varphi(7,0)+9)}(100)$$
ten-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(10)100 $$f_{\varphi(5,\varphi(7,0)+{10})}(100)$$ $$H_{\varphi(5,\varphi(7,0)+{10})}(100)$$
hundred-ex-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#100 $$f_{\varphi(5,\varphi(7,0)+{\omega})}(100)$$ $$H_{\varphi(5,\varphi(7,0)+{\omega})}(100)$$
godgahlah-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#^#100 $$f_{\varphi(5,\varphi(7,0)+{\omega^\omega})}(100)$$ $$H_{\varphi(5,\varphi(7,0)+{\omega^\omega})}(100)$$
tethrathoth-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#^^#100 $$f_{\varphi(5,\varphi(7,0)+\varepsilon_0)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varepsilon_0)}(100)$$
tethracross-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#^^##100 $$f_{\varphi(5,\varphi(7,0)+\zeta_0)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\zeta_0)}(100)$$
tethracubor-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#^^###100 $$f_{\varphi(5,\varphi(7,0)+\eta_0)}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\eta_0)}(100)$$
tethrateron-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>#^^####100 $$f_{\varphi(5,\varphi(7,0)+\varphi(4,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(4,0))}(100)$$
tethrapeton-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(#^^#^5)100 $$f_{\varphi(5,\varphi(7,0)+\varphi(5,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(5,0))}(100)$$
tethrahexon-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(#^^#^6)100 $$f_{\varphi(5,\varphi(7,0)+\varphi(6,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(6,0))}(100)$$
tethrahepton-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(#^^#^7)100 $$f_{\varphi(5,\varphi(7,0)+\varphi(7,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(7,0))}(100)$$
territethrahepton-turreted-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(#^^#^7)^^#100 $$f_{\varphi(5,\varphi(7,0)+{\varepsilon_{\varphi(7,0)+1}})}(100)$$ $$H_{\varphi(5,\varphi(7,0)+{\varepsilon_{\varphi(7,0)+1}})}(100)$$
dustaculated-terripenterated-tethrahepton E100(#^^#^7)^^(#^5)>(#^^#^7)^^(#^5)100 $$f_{\varphi(5,\varphi(5,\varphi(7,0)+1))}(100)$$ $$H_{\varphi(5,\varphi(5,\varphi(7,0)+1))}(100)$$
tristaculated-terripenterated-tethrahepton E100(#^^#^7)(#^5)>(#^^#^7)^^(#^5)>(#^^#^7)^^(#^5)100

= E100((#^^#^7)^^#^6)3

$$f_{\varphi(6,\varphi(7,0)+1)[3]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[3]}(100)$$
tetrastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)4 $$f_{\varphi(6,\varphi(7,0)+1)[4]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[4]}(100)$$
pentastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)5 $$f_{\varphi(6,\varphi(7,0)+1)[5]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[5]}(100)$$
hexastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)6 $$f_{\varphi(6,\varphi(7,0)+1)[6]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[6]}(100)$$
heptastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)7 $$f_{\varphi(6,\varphi(7,0)+1)[7]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[7]}(100)$$
ogdastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)8 $$f_{\varphi(6,\varphi(7,0)+1)[8]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[8]}(100)$$
ennastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)9 $$f_{\varphi(6,\varphi(7,0)+1)[9]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[9]}(100)$$
dekastaculated-terripenterated-tethrahepton E100((#^^#^7)^^#^6)10 $$f_{\varphi(6,\varphi(7,0)+1)[10]}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)[10]}(100)$$
terrihexerated-tethrahepton E100((#^^#^7)^^#^6)100 $$f_{\varphi(6,\varphi(7,0)+1)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+1)}(100)$$
terrible terrisquared-terricubed-territesserated-terripenterated-terrihexerated-tethrahepton E100((((((#^^#^7)^^#^6)^^#^5)^^####)^^###)^^##)^^#100
two-ex-terrihexerated-tethrahepton E100(((#^^#^7)^^#^6)^^#^6)100 $$f_{\varphi(6,\varphi(7,0)+2)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+2)}(100)$$
three-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(3)100 $$f_{\varphi(6,\varphi(7,0)+3)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+3)}(100)$$
four-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(4)100 $$f_{\varphi(6,\varphi(7,0)+4)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+4)}(100)$$
five-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(5)100 $$f_{\varphi(6,\varphi(7,0)+5)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+5)}(100)$$
six-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(6)100 $$f_{\varphi(6,\varphi(7,0)+6)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+6)}(100)$$
seven-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(7)100 $$f_{\varphi(6,\varphi(7,0)+7)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+7)}(100)$$
eight-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(8)100 $$f_{\varphi(6,\varphi(7,0)+8)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+8)}(100)$$
nine-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(9)100 $$f_{\varphi(6,\varphi(7,0)+9)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+9)}(100)$$
ten-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(10)100 $$f_{\varphi(6,\varphi(7,0)+{10})}(100)$$ $$H_{\varphi(6,\varphi(7,0)+6)}(100)$$
hundred-ex-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#100 $$f_{\varphi(6,\varphi(7,0)+\omega)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\omega)}(100)$$
godgahlah-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#^#100 $$f_{\varphi(6,\varphi(7,0)+{\omega^\omega})}(100)$$ $$H_{\varphi(6,\varphi(7,0)+{\omega^\omega})}(100)$$
tethrathoth-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#^^#100 $$f_{\varphi(6,\varphi(7,0)+\varepsilon_0)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\varepsilon_0)}(100)$$
tethracross-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#^^##100 $$f_{\varphi(6,\varphi(7,0)+\zeta_0)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\zeta_0)}(100)$$
tethracubor-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#^^###100 $$f_{\varphi(6,\varphi(7,0)+\eta_0)}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\eta_0)}(100)$$
tethrateron-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>#^^####100 $$f_{\varphi(5,\varphi(7,0)+\varphi(4,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(4,0))}(100)$$
tethrapeton-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(#^^#^5)100 $$f_{\varphi(5,\varphi(7,0)+\varphi(5,0))}(100)$$ $$H_{\varphi(5,\varphi(7,0)+\varphi(5,0))}(100)$$
tethrahexon-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(#^^#^6)100 $$f_{\varphi(6,\varphi(7,0)+\varphi(6,0))}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\varphi(6,0))}(100)$$
tethrahepton-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(#^^#^7)100 $$f_{\varphi(6,\varphi(7,0)+\varphi(7,0))}(100)$$ $$H_{\varphi(6,\varphi(7,0)+\varphi(7,0))}(100)$$
territethrahepton-turreted-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(#^^#^7)^^#100 $$f_{\varphi(6,\varphi(7,0)+{\varepsilon_{\varphi(7,0)+1}})}(100)$$ $$H_{\varphi(6,\varphi(7,0)+{\varepsilon_{\varphi(7,0)+1}})}(100)$$
dustaculated-terrihexerated-tethrahepton E100(#^^#^7)^^(#^6)>(#^^#^7)^^(#^6)100 $$f_{\varphi(6,\varphi(6,\varphi(7,0)+1))}(100)$$ $$H_{\varphi(6,\varphi(6,\varphi(7,0)+1))}(100)$$
tristaculated-terrihexerated-tethrahepton E100(#^^#^7)(#^6)>(#^^#^7)^^(#^6)>(#^^#^7)^^(#^6)100

= E100((#^^#^7)^^#^7)3

$$f_{\varphi(7,1)[3]}(100)$$ $$H_{\varphi(7,1)[3]}(100)$$
tetrastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)4 $$f_{\varphi(7,1)[4]}(100)$$ $$H_{\varphi(7,1)[4]}(100)$$
pentastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)5 $$f_{\varphi(7,1)[5]}(100)$$ $$H_{\varphi(7,1)[5]}(100)$$
hexastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)6 $$f_{\varphi(7,1)[6]}(100)$$ $$H_{\varphi(7,1)[6]}(100)$$
heptastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)7 $$f_{\varphi(7,1)[7]}(100)$$ $$H_{\varphi(7,1)[7]}(100)$$
ogdastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)8 $$f_{\varphi(7,1)[8]}(100)$$ $$H_{\varphi(7,1)[8]}(100)$$
ennastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)9 $$f_{\varphi(7,1)[9]}(100)$$ $$H_{\varphi(7,1)[9]}(100)$$
dekastaculated-terrihexerated-tethrahepton E100((#^^#^7)^^#^7)10 $$f_{\varphi(7,1)[10]}(100)$$ $$H_{\varphi(7,1)[10]}(100)$$
tethraduhepton E100((#^^#^7)^^#^7)100 $$f_{\varphi(7,1)}(100)$$ $$H_{\varphi(7,1)}(100)$$
tethratrihepton E100(((#^^#^7)^^#^7)^^#^7)100 $$f_{\varphi(7,2)}(100)$$ $$H_{\varphi(7,2)}(100)$$
tethratetrahepton E100((((#^^#^7)^^#^7)^^#^7)^^#^7)100 $$f_{\varphi(7,3)}(100)$$ $$H_{\varphi(7,3)}(100)$$
tethrapentahepton E100#^^(#^7)>#5 $$f_{\varphi(7,4)}(100)$$ $$H_{\varphi(7,4)}(100)$$
tethrahexahepton E100#^^(#^7)>#6 $$f_{\varphi(7,5)}(100)$$ $$H_{\varphi(7,5)}(100)$$
tethraheptahepton E100#^^(#^7)>#7 $$f_{\varphi(7,6)}(100)$$ $$H_{\varphi(7,6)}(100)$$
tethra-octahepton E100#^^(#^7)>#8 $$f_{\varphi(7,7)}(100)$$ $$H_{\varphi(7,7)}(100)$$
tethra-ennahepton E100#^^(#^7)>#9 $$f_{\varphi(7,8)}(100)$$ $$H_{\varphi(7,8)}(100)$$
tethradekahepton E100#^^(#^7)>#10 $$f_{\varphi(7,9)}(100)$$ $$H_{\varphi(7,9)}(100)$$
tethra-endekahepton E100#^^(#^7)>#11 $$f_{\varphi(7,10)}(100)$$ $$H_{\varphi(7,10)}(100)$$
tethradodekahepton E100#^^(#^7)>#12 $$f_{\varphi(7,11)}(100)$$ $$H_{\varphi(7,11)}(100)$$
tethra-icosahepton E100#^^(#^7)>#20 $$f_{\varphi(7,19)}(100)$$ $$H_{\varphi(7,19)}(100)$$
tethriterhepton E100#^^(#^7)>#100 $$f_{\varphi(7,\omega)}(100)$$ $$H_{\varphi(7,\omega)}(100)$$
godgahlah-turreted-tethrahepton E100#^^(#^7)>#^#100 $$f_{\varphi(7,\omega^\omega)}(100)$$ $$H_{\varphi(7,\omega^\omega)}(100)$$
tethrathoth-turreted-tethrahepton E100#^^(#^7)>#^^#100 $$f_{\varphi(7,\varepsilon_0)}(100)$$ $$H_{\varphi(7,\varepsilon_0)}(100)$$
tethracross-turreted-tethrahepton E100#^^(#^7)>#^^##100 $$f_{\varphi(7,\zeta_0)}(100)$$ $$H_{\varphi(7,\zeta_0)}(100)$$
tethracubor-turreted-tethrahepton E100#^^(#^7)>#^^###100 $$f_{\varphi(7,\eta_0)}(100)$$ $$H_{\varphi(7,\eta_0)}(100)$$
tethrateron-turreted-tethrahepton E100#^^(#^7)>#^^####100 $$f_{\varphi(7,\varphi(4,0))}(100)$$ $$H_{\varphi(7,\varphi(4,0))}(100)$$
tethrapeton-turreted-tethrahepton E100#^^(#^7)>#^^(#^5)100 $$f_{\varphi(7,\varphi(5,0))}(100)$$ $$H_{\varphi(7,\varphi(5,0))}(100)$$
tethrahexon-turreted-tethrahepton E100#^^(#^7)>#^^(#^6)100 $$f_{\varphi(7,\varphi(6,0))}(100)$$ $$H_{\varphi(7,\varphi(6,0))}(100)$$
tethrahepton-turreted-tethrahepton, dustaculated-tethrahepton E100#^^(#^7)>#^^(#^7)100 $$f_{\varphi(7,\varphi(7,0))}(100)$$ $$H_{\varphi(7,\varphi(7,0))}(100)$$
tristaculated-tethrahepton E100#^^(#^7)>#^^(#^7)>#^^(#^7)100 $$f_{\varphi(7,\varphi(7,\varphi(7,0)))}(100)$$ $$H_{\varphi(7,\varphi(7,\varphi(7,0)))}(100)$$
tetrastaculated-tethrahepton E100#^^(#^7)>#^^(#^7)>#^^(#^7)>#^^(#^7)100

= E100#^^(#^8)4

$$f_{\varphi(8,0)[4]}(100)$$ $$H_{\varphi(8,0)[4]}(100)$$
pentastaculated-tethrahepton E100#^^(#^8)5 $$f_{\varphi(8,0)[5]}(100)$$ $$H_{\varphi(8,0)[5]}(100)$$
hexastaculated-tethrahepton E100#^^(#^8)6 $$f_{\varphi(8,0)[6]}(100)$$ $$H_{\varphi(8,0)[6]}(100)$$
heptastaculated-tethrahepton E100#^^(#^8)7 $$f_{\varphi(8,0)[7]}(100)$$ $$H_{\varphi(8,0)[7]}(100)$$
ogdastaculated-tethrahepton E100#^^(#^8)8 $$f_{\varphi(8,0)[8]}(100)$$ $$H_{\varphi(8,0)[8]}(100)$$
ennastaculated-tethrahepton E100#^^(#^8)9 $$f_{\varphi(8,0)[9]}(100)$$ $$H_{\varphi(8,0)[9]}(100)$$
dekastaculated-tethrahepton E100#^^(#^8)10 $$f_{\varphi(8,0)[10]}(100)$$ $$H_{\varphi(8,0)[10]}(100)$$
icosastaculated-tethrahepton E100#^^(#^8)20 $$f_{\varphi(8,0)[20]}(100)$$ $$H_{\varphi(8,0)[20]}(100)$$
triantastaculated-tethrahepton E100#^^(#^8)30 $$f_{\varphi(8,0)[30]}(100)$$ $$H_{\varphi(8,0)[30]}(100)$$
sarantastaculated-tethrahepton E100#^^(#^8)40 $$f_{\varphi(8,0)[40]}(100)$$ $$H_{\varphi(8,0)[40]}(100)$$
penintastaculated-tethrahepton E100#^^(#^8)50 $$f_{\varphi(8,0)[50]}(100)$$ $$H_{\varphi(8,0)[50]}(100)$$
exintastaculated-tethrahepton E100#^^(#^8)60 $$f_{\varphi(8,0)[60]}(100)$$ $$H_{\varphi(8,0)[60]}(100)$$
ebdomintastaculated-tethrahepton E100#^^(#^8)70 $$f_{\varphi(8,0)[70]}(100)$$ $$H_{\varphi(8,0)[70]}(100)$$
ogdontastaculated-tethrahepton E100#^^(#^8)80 $$f_{\varphi(8,0)[80]}(100)$$ $$H_{\varphi(8,0)[80]}(100)$$
enenintastaculated-tethrahepton E100#^^(#^8)90 $$f_{\varphi(8,0)[90]}(100)$$ $$H_{\varphi(8,0)[90]}(100)$$

## Etymology

Parts of names Meaning
tethra ^^ (tetration)
du 2
tri 3
tetra 4
penta 5
hexa 6
hepta 7
ogda 8
enna 9
deka 10
icosa 20
trianta 30
saranta 40
peninta 50
exinta 60
ebdominta 70
ogdonta 80
eneninta 90

Some names of the numbers of this regiment are based on names of other Saibian's numbers, such as:

Advertisement