FANDOM


The tethra-ogdon regiment is a series of numbers from E100#^^#^#8 to E100#^^(#^9)90 defined using Extended Cascading-E Notation (i.e. beginning from tethra-ogdon and up to enenintastaculated-tethra-ogdon).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Tethrahepton regiment Tethrennon regiment

List of numbers of the regiment

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation) Hardy hierarchy (approximation)
tethra-ogdon, tethra-octeract E100#^^#^#8 \(f_{\varphi(8,0)}(100)\) \(H_{\varphi(8,0)}(100)\)
grand tethra-ogdon E100#^^(#^8)100#2 \(f^2_{\varphi(8,0)}(100)\) \(H_{\varphi(8,0)2}(100)\)
grangol-carta-tethra-ogdon E100#^^(#^8)100#100 \(f_{\varphi(8,0)+1}(100)\) \(H_{\varphi(8,0)\omega}(100)\)
grand grangol-carta-tethra-ogdon E100#^^(#^8)100#100#2 \(f_{\varphi(8,0)+1}^2(100)\) \(H_{\varphi(8,0)\omega2}(100)\)
godgahlah-carta-tethra-ogdon E100#^^(#^8)100#^#100 \(f_{\varphi(8,0)+\omega^\omega}(100)\) \(H_{\varphi(8,0)\omega^{\omega^\omega}}(100)\)
tethrathoth-carta-tethra-ogdon E100#^^(#^8)100#^^#100 \(f_{\varphi(8,0)+\varepsilon_0}(100)\) \(H_{\varphi(8,0)\varepsilon_0}(100)\)
tethracross-carta-tethra-ogdon E100#^^(#^8)100#^^##100 \(f_{\varphi(8,0)+\zeta_0}(100)\) \(H_{\varphi(8,0)\zeta_0}(100)\)
tethracubor-carta-tethra-ogdon E100#^^(#^8)100#^^###100 \(f_{\varphi(8,0)+\eta_0}(100)\) \(H_{\varphi(8,0)\eta_0}(100)\)
tethrateron-carta-tethra-ogdon E100#^^(#^8)100#^^####100 \(f_{\varphi(8,0)+\varphi(4,0)}(100)\) \(H_{\varphi(8,0)\varphi(4,0)}(100)\)
tethrapeton-carta-tethra-ogdon E100#^^(#^8)100#^^(#^5)100 \(f_{\varphi(8,0)+\varphi(5,0)}(100)\) \(H_{\varphi(8,0)\varphi(5,0)}(100)\)
tethrahexon-carta-tethra-ogdon E100#^^(#^8)100#^^(#^6)100 \(f_{\varphi(8,0)+\varphi(6,0)}(100)\) \(H_{\varphi(8,0)\varphi(6,0)}(100)\)
tethrahepton-carta-tethra-ogdon E100#^^(#^8)100#^^(#^7)100 \(f_{\varphi(8,0)+\varphi(7,0)}(100)\) \(H_{\varphi(8,0)\varphi(7,0)}(100)\)
tethra-ogdon-by-deuteron E100#^^(#^8)100#^^(#^8)100 \(f_{\varphi(8,0)2}(100)\) \(H_{\varphi(8,0)^2}(100)\)
tethra-ogdon-by-triton E100#^^(#^8)100#^^(#^8)100#^^(#^8)100 \(f_{\varphi(8,0)3}(100)\) \(H_{\varphi(8,0)^3}(100)\)
tethra-ogdon-by-teterton E100#^^(#^8)*#5 \(f_{\varphi(8,0)4}(100)\) \(H_{\varphi(8,0)^4}(100)\)
tethra-ogdon-by-pepton E100#^^(#^8)*#6 \(f_{\varphi(8,0)5}(100)\) \(H_{\varphi(8,0)^5}(100)\)
tethra-ogdon-by-exton E100#^^(#^8)*#8 \(f_{\varphi(8,0)6}(100)\) \(H_{\varphi(8,0)^6}(100)\)
tethra-ogdon-by-epton E100#^^(#^8)*#8 \(f_{\varphi(8,0)7}(100)\) \(H_{\varphi(8,0)^7}(100)\)
tethra-ogdon-by--ogdon E100#^^(#^8)*#9 \(f_{\varphi(8,0)8}(100)\) \(H_{\varphi(8,0)^8}(100)\)
tethra-ogdon-by-enton E100#^^(#^8)*#10 \(f_{\varphi(8,0)9}(100)\) \(H_{\varphi(8,0)^9}(100)\)
tethra-ogdon-by-dekaton E100#^^(#^8)*#11 \(f_{\varphi(8,0)10}(100)\) \(H_{\varphi(8,0)^{10}}(100)\)
tethra-ogdon-by-hyperion E100#^^(#^8)*#100 \(f_{\varphi(8,0)\omega}(100)\) \(H_{\varphi(8,0)^\omega}(100)\)
tethra-ogdon-by-godgahlah E100#^^(#^8)*#^#100 \(f_{\varphi(8,0)\omega^{\omega}}(100)\) \(H_{\varphi(8,0)^{\omega^\omega}}(100)\)
tethra-ogdon-by-tethrathoth E100#^^(#^8)*#^^#100 \(f_{\varphi(8,0)\varepsilon_0}(100)\) \(H_{\varphi(8,0)^{\varepsilon_0}}(100)\)
tethra-ogdon-by-tethracross E100#^^(#^8)*#^^##100 \(f_{\varphi(8,0)\zeta_0}(100)\) \(H_{\varphi(8,0)^{\zeta_0}}(100)\)
tethra-ogdon-by-tethracubor E100#^^(#^8)*#^^###100 \(f_{\varphi(8,0)\eta_0}(100)\) \(H_{\varphi(8,0)^{\eta_0}}(100)\)
tethra-ogdon-by-tethrateron E100#^^(#^8)*#^^####100 \(f_{\varphi(8,0)\varphi(4,0)}(100)\) \(H_{\varphi(8,0)^{\varphi(4,0)}}(100)\)
tethra-ogdon-by-tethrapeton E100#^^(#^8)*#^^(#^5)100 \(f_{\varphi(8,0)\varphi(5,0)}(100)\) \(H_{\varphi(8,0)^{\varphi(5,0)}}(100)\)
tethra-ogdon-by-tethrahexon E100#^^(#^8)*#^^(#^6)100 \(f_{\varphi(8,0)\varphi(6,0)}(100)\) \(H_{\varphi(8,0)^{\varphi(6,0)}}(100)\)
tethra-ogdon-by-tethrahepton E100#^^(#^8)*#^^(#^7)100 \(f_{\varphi(8,0)\varphi(7,0)}(100)\) \(H_{\varphi(8,0)^{\varphi(7,0)}}(100)\)
deutero-tethra-ogdon E100#^^(#^8)*#^^(#^8)100 \(f_{\varphi(8,0)^2}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)}}(100)\)
trito-tethra-ogdon E100#^^(#^8)*#^^(#^8)*#^^(#^8)100 \(f_{\varphi(8,0)^3}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^2}}(100)\)
teterto-tethra-ogdon E100(#^^#^8)^#4 \(f_{\varphi(8,0)^4}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^3}}(100)\)
pepto-tethra-ogdon E100(#^^#^8)^#5 \(f_{\varphi(8,0)^5}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^4}}(100)\)
exto-tethra-ogdon E100(#^^#^8)^#6 \(f_{\varphi(8,0)^6}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^5}}(100)\)
epto-tethra-ogdon E100(#^^#^8)^#8 \(f_{\varphi(8,0)^7}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^6}}(100)\)
ogdo-tethra-ogdon E100(#^^#^8)^#8 \(f_{\varphi(8,0)^8}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^7}}(100)\)
ento-tethra-ogdon E100(#^^#^8)^#9 \(f_{\varphi(8,0)^9}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^8}}(100)\)
dekato-tethra-ogdon E100(#^^#^8)^#10 \(f_{\varphi(8,0)^{10}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^9}}(100)\)
isosto-tethra-ogdon E100(#^^#^8)^#20 \(f_{\varphi(8,0)^{20}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{19}}}(100)\)
trianto-tethra-ogdon E100(#^^#^8)^#30 \(f_{\varphi(8,0)^{30}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{29}}}(100)\)
saranto-tethra-ogdon E100(#^^#^8)^#40 \(f_{\varphi(8,0)^{40}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{39}}}(100)\)
peninto-tethra-ogdon E100(#^^#^8)^#50 \(f_{\varphi(8,0)^{50}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{49}}}(100)\)
exinto-tethra-ogdon E100(#^^#^8)^#60 \(f_{\varphi(8,0)^{60}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{59}}}(100)\)
ebdominto-tethra-ogdon E100(#^^#^8)^#70 \(f_{\varphi(8,0)^{70}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{69}}}(100)\)
ogdonto-tethra-ogdon E100(#^^#^8)^#80 \(f_{\varphi(8,0)^{80}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{79}}}(100)\)
eneninto-tethra-ogdon E100(#^^#^8)^#90 \(f_{\varphi(8,0)^{90}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{89}}}(100)\)
tethra-ogdonifact E100(#^^#^8)^#100 \(f_{\varphi(8,0)^\omega}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^\omega}}(100)\)
quadratatethra-ogdon E100(#^^#^8)^##100 \(f_{\varphi(8,0)^{\omega^2}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^2}}}(100)\)
kubikutethra-ogdon E100(#^^#^8)^###100 \(f_{\varphi(8,0)^{\omega^3}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^3}}}(100)\)
quarticutethra-ogdon E100(#^^#^8)^####100 \(f_{\varphi(8,0)^{\omega^4}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^4}}}(100)\)
quinticutethra-ogdon E100(#^^#^8)^(#^5)100 \(f_{\varphi(8,0)^{\omega^5}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^5}}}(100)\)
sexticutethra-ogdon E100(#^^#^8)^(#^6)100 \(f_{\varphi(8,0)^{\omega^6}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^6}}}(100)\)
septicutethra-ogdon E100(#^^#^8)^(#^7)100 \(f_{\varphi(8,0)^{\omega^7}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^7}}}(100)\)
octicutethra-ogdon E100(#^^#^8)^(#^8)100 \(f_{\varphi(8,0)^{\omega^8}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^8}}}(100)\)
nonicutethra-ogdon E100(#^^#^8)^(#^9)100 \(f_{\varphi(8,0)^{\omega^9}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^9}}}(100)\)
decicutethra-ogdon E100(#^^#^8)^(#^10)100 \(f_{\varphi(8,0)^{\omega^{10}}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^{10}}}}(100)\)
tethra-ogdon-ipso-godgahlah E100(#^^#^8)^#^#100 \(f_{\varphi(8,0)^{\omega^\omega}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\omega^\omega}}}(100)\)
tethra-ogdon-ipso-tethrathoth E100(#^^#^8)^#^^#100 \(f_{\varphi(8,0)^{\varepsilon_0}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varepsilon_0}}}(100)\)
tethra-ogdon-ipso-tethrathoth E100(#^^#^8)^#^^#100 \(f_{\varphi(8,0)^{\varepsilon_0}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varepsilon_0}}}(100)\)
tethra-ogdon-ipso-tethracross E100(#^^#^8)^#^^##100 \(f_{\varphi(8,0)^{\zeta_0}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\zeta_0}}}(100)\)
tethra-ogdon-ipso-tethracubor E100(#^^#^8)^#^^###100 \(f_{\varphi(8,0)^{\eta_0}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\eta_0}}}(100)\)
tethra-ogdon-ipso-tethrateron E100(#^^#^8)^#^^####100 \(f_{\varphi(8,0)^{\varphi(4,0)}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(4,0)}}}(100)\)
tethra-ogdon-ipso-tethrapeton E100(#^^#^8)^(#^^#^5)100 \(f_{\varphi(8,0)^{\varphi(5,0)}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(5,0)}}}(100)\)
tethra-ogdon-ipso-tethrahexon E100(#^^#^8)^(#^^#^6)100 \(f_{\varphi(8,0)^{\varphi(6,0)}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(6,0)}}}(100)\)
tethra-ogdon-ipso-tethrahepton E100(#^^#^8)^(#^^#^7)100 \(f_{\varphi(8,0)^{\varphi(7,0)}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(7,0)}}}(100)\)
dutetrated-tethra-ogdon E100(#^^#^8)^(#^^#^8)100 \(f_{\varphi(8,0)^{\varphi(8,0)}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)}}}(100)\)
Giant tethra-ogdon E100(#^^#^8)^(#^^#^8)^#100 \(f_{\varphi(8,0)^{\varphi(8,0)^\omega}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)^\omega}}}(100)\)
tritetrated-tethra-ogdon E100(#^^#^8)^(#^^#^8)^(#^^#^8)100 \(f_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)}}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)}}}}(100)\)
Super Giant tethra-ogdon E100(#^^#^8)^(#^^#^8)^(#^^#^8)^#100 \(f_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)^\omega}}}(100)\) \(H_{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)^{\varphi(8,0)^\omega}}}}(100)\)
quadratetrated-tethra-ogdon E100(#^^#^8)^^#4 \(f_{\varphi(8,0)\uparrow\uparrow4}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow5}(100)\)
quinquatetrated-tethra-ogdon E100(#^^#^8)^^#5 \(f_{\varphi(8,0)\uparrow\uparrow5}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow6}(100)\)
sexatetrated-tethra-ogdon E100(#^^#^8)^^#6 \(f_{\varphi(8,0)\uparrow\uparrow6}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow7}(100)\)
septatetrated-tethra-ogdon E100(#^^#^8)^^#8 \(f_{\varphi(8,0)\uparrow\uparrow7}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow8}(100)\)
octatetrated-tethra-ogdon E100(#^^#^8)^^#8 \(f_{\varphi(8,0)\uparrow\uparrow8}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow9}(100)\)
nonatetrated-tethra-ogdon E100(#^^#^8)^^#9 \(f_{\varphi(8,0)\uparrow\uparrow9}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow10}(100)\)
decatetrated-tethra-ogdon E100(#^^#^8)^^#10 \(f_{\varphi(8,0)\uparrow\uparrow10}(100)\) \(H_{\varphi(8,0)\uparrow\uparrow11}(100)\)
terrible tethra-ogdon E100(#^^#^8)^^#100 \(f_{\varepsilon_{\varphi(8,0)+1}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+1}}(100)\)
hecato terrible tethra-ogdon E100((#^^#^8)^^#)^#100 \(f_{\varepsilon_{\varphi(8,0)+1}^\omega}(100)\) \(H_{\varepsilon_{\varphi(8,0)+1}^\omega}(100)\)
terrible terrible tethra-ogdon E100((#^^#^8)^^#)^^#100 \(f_{\varepsilon_{\varphi(8,0)+2}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+2}}(100)\)
three-ex-terrible tethra-ogdon E100(((#^^#^8)^^#)^^#)^^#100 \(f_{\varepsilon_{\varphi(8,0)+3}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+3}}(100)\)
four-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(4)100 \(f_{\varepsilon_{\varphi(8,0)+4}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+4}}(100)\)
five-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(5)100 \(f_{\varepsilon_{\varphi(8,0)+5}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+5}}(100)\)
six-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(6)100 \(f_{\varepsilon_{\varphi(8,0)+6}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+6}}(100)\)
seven-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(7)100 \(f_{\varepsilon_{\varphi(8,0)+7}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+7}}(100)\)
eight-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(8)100 \(f_{\varepsilon_{\varphi(8,0)+8}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+8}}(100)\)
nine-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(9)100 \(f_{\varepsilon_{\varphi(8,0)+9}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+9}}(100)\)
ten-ex-terrible tethra-ogdon E100(#^^#^8)^^#>(10)100 \(f_{\varepsilon_{\varphi(8,0)+10}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+10}}(100)\)
territerated tethra-ogdon E100(#^^#^8)^^#>#100 \(f_{\varepsilon_{\varphi(8,0)+\omega}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\omega}}(100)\)
godgahlah-turreted-territethra-ogdon E100(#^^#^8)^^#>#^#100 \(f_{\varepsilon_{\varphi(8,0)+\omega^\omega}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-territethra-ogdon E100(#^^#^8)^^#>#^^#100 \(f_{\varepsilon_{\varphi(8,0)+\varepsilon_0}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\varepsilon_0}}(100)\)
tethracross-turreted-territethra-ogdon E100(#^^#^8)^^#>#^^##100 \(f_{\varepsilon_{\varphi(8,0)+\zeta_0}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\zeta_0}}(100)\)
tethracubor-turreted-territethra-ogdon E100(#^^#^8)^^#>#^^###100 \(f_{\varepsilon_{\varphi(8,0)+\eta_0}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\eta_0}}(100)\)
tethrateron-turreted-territethra-ogdon E100(#^^#^8)^^#>#^^####100 \(f_{\varepsilon_{\varphi(8,0)+\varphi(4,0)}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-territethra-ogdon E100(#^^#^8)^^#>(#^^#^5)100 \(f_{\varepsilon_{\varphi(8,0)+\varphi(5,0)}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-territethra-ogdon E100(#^^#^8)^^#>(#^^#^6)100 \(f_{\varepsilon_{\varphi(8,0)+\varphi(6,0)}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\varphi(6,0)}}(100)\)
tethrahepton-turreted-territethra-ogdon E100(#^^#^8)^^#>(#^^#^7)100 \(f_{\varepsilon_{\varphi(8,0)+\varphi(7,0)}}(100)\) \(H_{\varepsilon_{\varphi(8,0)+\varphi(7,0)}}(100)\)
tethra-ogdon-turreted-territethra-ogdon E100(#^^#^8)^^#>(#^^#^8)100 \(f_{\varepsilon_{\varphi(8,0)2}}(100)\) \(H_{\varepsilon_{\varphi(8,0)2}}(100)\)
dustaculated-territethra-ogdon E100(#^^#^8)^^#>(#^^#^8)^^#100 \(f_{\varepsilon_{\varepsilon_{\varphi(8,0)+1}}}(100)\) \(H_{\varepsilon_{\varepsilon_{\varphi(8,0)+1}}}(100)\)
tristaculated-territethra-ogdon E100(#^^#^8)^^##3 \(f_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(8,0)+1}}}}(100)\) \(H_{\varepsilon_{\varepsilon_{\varepsilon_{\varphi(8,0)+1}}}}(100)\)
tetrastaculated-territethra-ogdon E100(#^^#^8)^^##4 \(f_{\zeta_{\varphi(8,0)+1}[4]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[4]}(100)\)
pentastaculated-territethra-ogdon E100(#^^#^8)^^##5 \(f_{\zeta_{\varphi(8,0)+1}[5]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[5]}(100)\)
hexastaculated-territethra-ogdon E100(#^^#^8)^^##6 \(f_{\zeta_{\varphi(6,0)+1}[6]}(100)\) \(H_{\zeta_{\varphi(6,0)+1}[6]}(100)\)
heptastaculated-territethra-ogdon E100(#^^#^8)^^##7 \(f_{\zeta_{\varphi(8,0)+1}[7]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[7]}(100)\)
ogdastaculated-territethra-ogdon E100(#^^#^8)^^##8 \(f_{\zeta_{\varphi(8,0)+1}[8]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[8]}(100)\)
ennastaculated-territethra-ogdon E100(#^^#^8)^^##9 \(f_{\zeta_{\varphi(8,0)+1}[9]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[9]}(100)\)
dekastaculated-territethra-ogdon E100(#^^#^8)^^##10 \(f_{\zeta_{\varphi(8,0)+1}[10]}(100)\) \(H_{\zeta_{\varphi(8,0)+1}[10]}(100)\)
terrisquared-tethra-ogdon E100(#^^#^8)^^##100 \(f_{\zeta_{\varphi(8,0)+1}}(100)\) \(H_{\zeta_{\varphi(8,0)+1}}(100)\)
two-ex-terrisquared-tethra-ogdon E100((#^^#^8)^^##)^^##100 \(f_{\zeta_{\varphi(8,0)+2}}(100)\) \(H_{\zeta_{\varphi(8,0)+2}}(100)\)
three-ex-terrisquared-tethra-ogdon E100(((#^^#^8)^^##)^^##)^^#100 \(f_{\zeta_{\varphi(8,0)+3}}(100)\) \(H_{\zeta_{\varphi(8,0)+3}}(100)\)
four-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(4)100 \(f_{\zeta_{\varphi(8,0)+4}}(100)\) \(H_{\zeta_{\varphi(8,0)+4}}(100)\)
five-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(5)100 \(f_{\zeta_{\varphi(8,0)+5}}(100)\) \(H_{\zeta_{\varphi(8,0)+5}}(100)\)
six-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(6)100 \(f_{\zeta_{\varphi(8,0)+6}}(100)\) \(H_{\zeta_{\varphi(8,0)+6}}(100)\)
seven-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(7)100 \(f_{\zeta_{\varphi(8,0)+7}}(100)\) \(H_{\zeta_{\varphi(8,0)+7}}(100)\)
eight-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(8)100 \(f_{\zeta_{\varphi(8,0)+8}}(100)\) \(H_{\zeta_{\varphi(8,0)+8}}(100)\)
nine-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(9)100 \(f_{\zeta_{\varphi(8,0)+9}}(100)\) \(H_{\zeta_{\varphi(8,0)+9}}(100)\)
ten-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(10)100 \(f_{\zeta_{\varphi(8,0)+{10}}}(100)\) \(H_{\zeta_{\varphi(8,0)+{10}}}(100)\)
hundred-ex-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#100 \(f_{\zeta_{\varphi(8,0)+\omega}}(100)\) \(H_{\zeta_{\varphi(8,0)+\omega}}(100)\)
godgahlah-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#^#100 \(f_{\zeta_{\varphi(8,0)+\omega^\omega}}(100)\) \(H_{\zeta_{\varphi(8,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#^^#100 \(f_{\zeta_{\varphi(8,0)+\varepsilon_0}}(100)\) \(H_{\zeta_{\varphi(8,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#^^##100 \(f_{\zeta_{\varphi(8,0)+\zeta_0}}(100)\) \(H_{\zeta_{\varphi(8,0)+\zeta_0}}(100)\)
tethracubor-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#^^###100 \(f_{\zeta_{\varphi(8,0)+\eta_0}}(100)\) \(H_{\zeta_{\varphi(8,0)+\eta_0}}(100)\)
tethrateron-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>#^^####100 \(f_{\zeta_{\varphi(8,0)+\varphi(4,0)}}(100)\) \(H_{\zeta_{\varphi(8,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^5)100 \(f_{\zeta_{\varphi(8,0)+\varphi(5,0)}}(100)\) \(H_{\zeta_{\varphi(8,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^6)100 \(f_{\zeta_{\varphi(8,0)+\varphi(6,0)}}(100)\) \(H_{\zeta_{\varphi(8,0)+\varphi(6,0)}}(100)\)
tethrahepton-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^7)100 \(f_{\zeta_{\varphi(8,0)+\varphi(7,0)}}(100)\) \(H_{\zeta_{\varphi(8,0)+\varphi(7,0)}}(100)\)
tethra-ogdon-turreted-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^8)100 \(f_{\zeta_{\varphi(8,0)2}}(100)\) \(H_{\zeta_{\varphi(8,0)2}}(100)\)
dustaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^8)^^##100 \(f_{\zeta_{\zeta_{\varphi(8,0)+1}}}(100)\) \(H_{\zeta_{\zeta_{\varphi(8,0)+1}}}(100)\)
tristaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^##>(#^^#^8)^^##>(#^^#^8)^^##100 \(f_{\zeta_{\zeta_{\zeta_{\varphi(8,0)+1}}}}(100)\) \(H_{\zeta_{\zeta_{\zeta_{\varphi(8,0)+1}}}}(100)\)
tetrastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###4 \(f_{\eta_{\varphi(8,0)+1}[4]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[4]}(100)\)
pentastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###5 \(f_{\eta_{\varphi(8,0)+1}[5]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[5]}(100)\)
hexastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###6 \(f_{\eta_{\varphi(8,0)+1}[6]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[6]}(100)\)
heptastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###7 \(f_{\eta_{\varphi(8,0)+1}[7]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[7]}(100)\)
ogdastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###8 \(f_{\eta_{\varphi(8,0)+1}[8]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[8]}(100)\)
ennastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###9 \(f_{\eta_{\varphi(8,0)+1}[9]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[9]}(100)\)
dekastaculated-terrisquared-tethra-ogdon E100(#^^#^8)^^###10 \(f_{\eta_{\varphi(8,0)+1}[10]}(100)\) \(H_{\eta_{\varphi(8,0)+1}[10]}(100)\)
terricubed-tethra-ogdon E100(#^^#^(8))^^###100 \(f_{\eta_{\varphi(8,0)+1}}(100)\) \(H_{\eta_{\varphi(8,0)+1}}(100)\)
two-ex-terricubed-tethra-ogdon E100((#^^#^8)^^###)^^###100 \(f_{\eta_{\varphi(8,0)+2}}(100)\) \(H_{\eta_{\varphi(8,0)+2}}(100)\)
three-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(3)100 \(f_{\eta_{\varphi(8,0)+3}}(100)\) \(H_{\eta_{\varphi(8,0)+3}}(100)\)
four-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(4)100 \(f_{\eta_{\varphi(8,0)+4}}(100)\) \(H_{\eta_{\varphi(8,0)+4}}(100)\)
five-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(5)100 \(f_{\eta_{\varphi(8,0)+5}}(100)\) \(H_{\eta_{\varphi(8,0)+5}}(100)\)
six-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(6)100 \(f_{\eta_{\varphi(8,0)+6}}(100)\) \(H_{\eta_{\varphi(8,0)+6}}(100)\)
seven-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(7)100 \(f_{\eta_{\varphi(8,0)+7}}(100)\) \(H_{\eta_{\varphi(8,0)+7}}(100)\)
eight-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(8)100 \(f_{\eta_{\varphi(8,0)+8}}(100)\) \(H_{\eta_{\varphi(8,0)+8}}(100)\)
nine-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(9)100 \(f_{\eta_{\varphi(8,0)+9}}(100)\) \(H_{\eta_{\varphi(8,0)+9}}(100)\)
ten-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>(10)100 \(f_{\eta_{\varphi(8,0)+{10}}}(100)\) \(H_{\eta_{\varphi(8,0)+{10}}}(100)\)
hundred-ex-terricubed-tethra-ogdon E100(#^^#^8)^^###>#100 \(f_{\eta_{\varphi(8,0)+\omega}}(100)\) \(H_{\eta_{\varphi(8,0)+\omega}}(100)\)
godgahlah-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>#^#100 \(f_{\eta_{\varphi(8,0)+\omega^\omega}}(100)\) \(H_{\eta_{\varphi(8,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>#^^#100 \(f_{\eta_{\varphi(8,0)+\varepsilon_0}}(100)\) \(H_{\eta_{\varphi(8,0)+\varepsilon_0}}(100)\)
tethracross-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>#^^##100 \(f_{\eta_{\varphi(8,0)+\zeta_0}}(100)\) \(H_{\eta_{\varphi(8,0)+\zeta_0}}(100)\)
tethracubor-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>#^^###100 \(f_{\eta_{\varphi(8,0)+\eta_0}}(100)\) \(H_{\eta_{\varphi(8,0)+\eta_0}}(100)\)
tethrateron-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>#^^####100 \(f_{\eta_{\varphi(8,0)+\varphi(4,0)}}(100)\) \(H_{\eta_{\varphi(8,0)+\varphi(4,0)}}(100)\)
tethrapeton-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^5)100 \(f_{\eta_{\varphi(8,0)+\varphi(5,0)}}(100)\) \(H_{\eta_{\varphi(8,0)+\varphi(5,0)}}(100)\)
tethrahexon-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^6)100 \(f_{\eta_{\varphi(8,0)+\varphi(6,0)}}(100)\) \(H_{\eta_{\varphi(8,0)+\varphi(6,0)}}(100)\)
tethrahepton-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^7)100 \(f_{\eta_{\varphi(8,0)+\varphi(7,0)}}(100)\) \(H_{\eta_{\varphi(8,0)+\varphi(7,0)}}(100)\)
tethra-ogdon-turreted-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^8)100 \(f_{\eta_{\varphi(8,0)2}}(100)\) \(H_{\eta_{\varphi(8,0)2}}(100)\)
dustaculated-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^8)^^###100 \(f_{\eta_{\eta_{\varphi(8,0)+1}}}(100)\) \(H_{\eta_{\eta_{\varphi(8,0)+1}}}(100)\)
tristaculated-terricubed-tethra-ogdon E100(#^^#^8)^^###>(#^^#^8)^^###>(#^^#^8)^^###100 \(f_{\eta_{\eta_{\eta_{\varphi(8,0)+1}}}}(100)\) \(H_{\eta_{\eta_{\eta_{\varphi(8,0)+1}}}}(100)\)
tetrastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####4 \(f_{\varphi(4,\varphi(8,0)+1)[4]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[4]}(100)\)
pentastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####5 \(f_{\varphi(4,\varphi(8,0)+1)[5]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[5]}(100)\)
hexastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####6 \(f_{\varphi(4,\varphi(8,0)+1)[6]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[6]}(100)\)
heptastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####8 \(f_{\varphi(4,\varphi(8,0)+1)[7]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[7]}(100)\)
ogdastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####8 \(f_{\varphi(4,\varphi(8,0)+1)[8]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[8]}(100)\)
ennastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####9 \(f_{\varphi(4,\varphi(8,0)+1)[9]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[9]}(100)\)
dekastaculated-terricubed-tethra-ogdon E100(#^^#^8)^^####10 \(f_{\varphi(4,\varphi(8,0)+1)[10]}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)[10]}(100)\)
territesserated-tethra-ogdon E100(#^^#^8)^^####100 \(f_{\varphi(4,\varphi(8,0)+1)}(100)\) \(H_{\varphi(4,\varphi(8,0)+1)}(100)\)
two-ex-territesserated-tethra-ogdon E100((#^^#^8)^^####)^^####100 \(f_{\varphi(4,\varphi(8,0)+2)}(100)\) \(H_{\varphi(4,\varphi(8,0)+2)}(100)\)
three-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(3)100 \(f_{\varphi(4,\varphi(8,0)+3)}(100)\) \(H_{\varphi(4,\varphi(8,0)+3)}(100)\)
four-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(4)100 \(f_{\varphi(4,\varphi(8,0)+4)}(100)\) \(H_{\varphi(4,\varphi(8,0)+4)}(100)\)
five-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(5)100 \(f_{\varphi(4,\varphi(8,0)+5)}(100)\) \(H_{\varphi(4,\varphi(8,0)+5)}(100)\)
six-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(6)100 \(f_{\varphi(4,\varphi(8,0)+6)}(100)\) \(H_{\varphi(4,\varphi(8,0)+6)}(100)\)
seven-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(7)100 \(f_{\varphi(4,\varphi(8,0)+7)}(100)\) \(H_{\varphi(4,\varphi(8,0)+7)}(100)\)
eight-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(8)100 \(f_{\varphi(4,\varphi(8,0)+8)}(100)\) \(H_{\varphi(4,\varphi(8,0)+8)}(100)\)
nine-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(9)100 \(f_{\varphi(4,\varphi(8,0)+9)}(100)\) \(H_{\varphi(4,\varphi(8,0)+9)}(100)\)
ten-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>(10)100 \(f_{\varphi(4,\varphi(8,0)+{10})}(100)\) \(H_{\varphi(4,\varphi(8,0)+{10})}(100)\)
hundred-ex-territesserated-tethra-ogdon E100(#^^#^8)^^####>#100 \(f_{\varphi(4,\varphi(8,0)+\omega)}(100)\) \(H_{\varphi(4,\varphi(8,0)+\omega)}(100)\)
godgahlah-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>#^#100 \(f_{\varphi(4,\varphi(8,0)+\omega^\omega)}(100)\) \(H_{\varphi(4,\varphi(8,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>#^^#100 \(f_{\varphi(4,\varphi(8,0)+\varepsilon_0)}(100)\) \(H_{\varphi(4,\varphi(8,0)+\varepsilon_0)}(100)\)
tethracross-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>#^^##100 \(f_{\varphi(4,\varphi(8,0)+\zeta_0)}(100)\) \(H_{\varphi(4,\varphi(8,0)+\zeta_0)}(100)\)
tethracubor-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>#^^###100 \(f_{\varphi(4,\varphi(8,0)+\eta_0)}(100)\) \(H_{\varphi(4,\varphi(8,0)+\eta_0)}(100)\)
tethrateron-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>#^^####100 \(f_{\varphi(4,\varphi(8,0)+\varphi(4,0))}(100)\) \(H_{\varphi(4,\varphi(8,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>(#^^#^5)100 \(f_{\varphi(4,\varphi(8,0)+\varphi(5,0))}(100)\) \(H_{\varphi(4,\varphi(8,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>(#^^#^6)100 \(f_{\varphi(4,\varphi(8,0)+\varphi(6,0))}(100)\) \(H_{\varphi(4,\varphi(8,0)+\varphi(6,0))}(100)\)
tethrahepton-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>(#^^#^7)100 \(f_{\varphi(4,\varphi(8,0)+\varphi(7,0))}(100)\) \(H_{\varphi(4,\varphi(8,0)+\varphi(7,0))}(100)\)
tethra-ogdon-turreted-territesserated-tethra-ogdon E100(#^^#^8)^^####>(#^^#^8)100 \(f_{\varphi(4,\varphi(8,0)2)}(100)\) \(H_{\varphi(4,\varphi(8,0)2)}(100)\)
dustaculated-territesserated-tethra-ogdon E100(#^^#^8)^^####>(#^^#^8)^^####100 \(f_{\varphi(4,\varphi(4,\varphi(8,0)+1))}(100)\) \(H_{\varphi(4,\varphi(4,\varphi(8,0)+1))}(100)\)
tristaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)3 \(f_{\varphi(5,\varphi(8,0)+1)[3]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[3]}(100)\)
tetrastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)4 \(f_{\varphi(5,\varphi(8,0)+1)[4]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[4]}(100)\)
pentastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)5 \(f_{\varphi(5,\varphi(8,0)+1)[5]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[5]}(100)\)
hexastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)6 \(f_{\varphi(5,\varphi(8,0)+1)[6]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[6]}(100)\)
heptastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)7 \(f_{\varphi(5,\varphi(8,0)+1)[7]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[7]}(100)\)
ogdastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)8 \(f_{\varphi(5,\varphi(8,0)+1)[8]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[8]}(100)\)
ennastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)9 \(f_{\varphi(5,\varphi(8,0)+1)[9]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[9]}(100)\)
dekastaculated-territesserated-tethra-ogdon E100((#^^#^8)^^#^5)10 \(f_{\varphi(5,\varphi(8,0)+1)[10]}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)[10]}(100)\)
terripenterated-tethra-ogdon E100((#^^#^8)^^#^5)100 \(f_{\varphi(5,\varphi(8,0)+1)}(100)\) \(H_{\varphi(5,\varphi(8,0)+1)}(100)\)
two-ex-terripenterated-tethra-ogdon E100(((#^^#^8)^^#^5)^^#^5)100 \(f_{\varphi(5,\varphi(8,0)+2)}(100)\) \(H_{\varphi(5,\varphi(8,0)+2)}(100)\)
three-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(3)100 \(f_{\varphi(5,\varphi(8,0)+3)}(100)\) \(H_{\varphi(5,\varphi(8,0)+3)}(100)\)
four-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(4)100 \(f_{\varphi(5,\varphi(8,0)+4)}(100)\) \(H_{\varphi(5,\varphi(8,0)+4)}(100)\)
five-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(5)100 \(f_{\varphi(5,\varphi(8,0)+5)}(100)\) \(H_{\varphi(5,\varphi(8,0)+5)}(100)\)
six-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(6)100 \(f_{\varphi(5,\varphi(8,0)+6)}(100)\) \(H_{\varphi(5,\varphi(8,0)+6)}(100)\)
seven-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(7)100 \(f_{\varphi(5,\varphi(8,0)+7)}(100)\) \(H_{\varphi(5,\varphi(8,0)+7)}(100)\)
eight-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(8)100 \(f_{\varphi(5,\varphi(8,0)+8)}(100)\) \(H_{\varphi(5,\varphi(8,0)+8)}(100)\)
nine-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(9)100 \(f_{\varphi(5,\varphi(8,0)+9)}(100)\) \(H_{\varphi(5,\varphi(8,0)+9)}(100)\)
ten-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(10)100 \(f_{\varphi(5,\varphi(8,0)+10)}(100)\) \(H_{\varphi(5,\varphi(8,0)+10)}(100)\)
hundred-ex-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#100 \(f_{\varphi(5,\varphi(8,0)+\omega)}(100)\) \(H_{\varphi(5,\varphi(8,0)+\omega)}(100)\)
godgahlah-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#^#100 \(f_{\varphi(5,\varphi(8,0)+\omega^\omega)}(100)\) \(H_{\varphi(5,\varphi(8,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#^^#100 \(f_{\varphi(5,\varphi(8,0)+\varepsilon_0)}(100)\) \(H_{\varphi(5,\varphi(8,0)+\varepsilon_0)}(100)\)
tethracross-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#^^##100 \(f_{\varphi(5,\varphi(8,0)+\zeta_0)}(100)\) \(H_{\varphi(5,\varphi(8,0)+\zeta_0)}(100)\)
tethracubor-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#^^###100 \(f_{\varphi(5,\varphi(8,0)+\eta_0)}(100)\) \(H_{\varphi(5,\varphi(8,0)+\eta_0)}(100)\)
tethrateron-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>#^^####100 \(f_{\varphi(5,\varphi(8,0)+\varphi(4,0))}(100)\) \(H_{\varphi(5,\varphi(8,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^5)100 \(f_{\varphi(5,\varphi(8,0)+\varphi(5,0))}(100)\) \(H_{\varphi(5,\varphi(8,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^6)100 \(f_{\varphi(5,\varphi(8,0)+\varphi(6,0))}(100)\) \(H_{\varphi(5,\varphi(8,0)+\varphi(6,0))}(100)\)
tethrahepton-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^7)100 \(f_{\varphi(5,\varphi(8,0)+\varphi(7,0))}(100)\) \(H_{\varphi(5,\varphi(8,0)+\varphi(7,0))}(100)\)
tethra-ogdon-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^8)100 \(f_{\varphi(5,\varphi(8,0)2)}(100)\) \(H_{\varphi(5,\varphi(8,0)2)}(100)\)
territethra-ogdon-turreted-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^8)^^#100 \(f_{\varphi(5,\varepsilon_{\varphi(8,0)+1})}(100)\) \(H_{\varphi(5,\varepsilon_{\varphi(8,0)+1})}(100)\)
dustaculated-terripenterated-tethra-ogdon E100(#^^#^8)^^(#^5)>(#^^#^8)^^(#^5)100 \(f_{\varphi(5,\varphi(5,\varphi(8,0)+1))}(100)\) \(H_{\varphi(5,\varphi(5,\varphi(8,0)+1))}(100)\)
tristaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)3 \(f_{\varphi(6,\varphi(8,0)+1)[3]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[3]}(100)\)
tetrastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)4 \(f_{\varphi(6,\varphi(8,0)+1)[4]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[4]}(100)\)
pentastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)5 \(f_{\varphi(6,\varphi(8,0)+1)[5]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[5]}(100)\)
hexastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)6 \(f_{\varphi(6,\varphi(8,0)+1)[6]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[6]}(100)\)
heptastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)7 \(f_{\varphi(6,\varphi(8,0)+1)[7]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[7]}(100)\)
ogdastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)8 \(f_{\varphi(6,\varphi(8,0)+1)[8]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[8]}(100)\)
ennastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)9 \(f_{\varphi(6,\varphi(8,0)+1)[9]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[9]}(100)\)
dekastaculated-terripenterated-tethra-ogdon E100((#^^#^8)^^#^6)10 \(f_{\varphi(6,\varphi(8,0)+1)[10]}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)[10]}(100)\)
terrihexerated-tethra-ogdon E100((#^^#^8)^^#^6)100 \(f_{\varphi(6,\varphi(8,0)+1)}(100)\) \(H_{\varphi(6,\varphi(8,0)+1)}(100)\)
two-ex-terrihexerated-tethra-ogdon E100(((#^^#^8)^^#^6)^^#^6)100 \(f_{\varphi(6,\varphi(8,0)+2)}(100)\) \(H_{\varphi(6,\varphi(8,0)+2)}(100)\)
three-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(3)100 \(f_{\varphi(6,\varphi(8,0)+3)}(100)\) \(H_{\varphi(6,\varphi(8,0)+3)}(100)\)
four-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(4)100 \(f_{\varphi(6,\varphi(8,0)+4)}(100)\) \(H_{\varphi(6,\varphi(8,0)+4)}(100)\)
five-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(5)100 \(f_{\varphi(6,\varphi(8,0)+5)}(100)\) \(H_{\varphi(6,\varphi(8,0)+5)}(100)\)
six-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(6)100 \(f_{\varphi(6,\varphi(8,0)+6)}(100)\) \(H_{\varphi(6,\varphi(8,0)+6)}(100)\)
seven-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(7)100 \(f_{\varphi(6,\varphi(8,0)+7)}(100)\) \(H_{\varphi(6,\varphi(8,0)+7)}(100)\)
eight-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(8)100 \(f_{\varphi(6,\varphi(8,0)+8)}(100)\) \(H_{\varphi(6,\varphi(8,0)+8)}(100)\)
nine-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(9)100 \(f_{\varphi(6,\varphi(8,0)+9)}(100)\) \(H_{\varphi(6,\varphi(8,0)+9)}(100)\)
ten-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(10)100 \(f_{\varphi(6,\varphi(8,0)+10)}(100)\) \(H_{\varphi(6,\varphi(8,0)+10)}(100)\)
hundred-ex-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#100 \(f_{\varphi(6,\varphi(8,0)+\omega)}(100)\) \(H_{\varphi(6,\varphi(8,0)+\omega)}(100)\)
godgahlah-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#^#100 \(f_{\varphi(6,\varphi(8,0)+\omega^\omega)}(100)\) \(H_{\varphi(6,\varphi(8,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#^^#100 \(f_{\varphi(6,\varphi(8,0)+\varepsilon_0)}(100)\) \(H_{\varphi(6,\varphi(8,0)+\varepsilon_0)}(100)\)
tethracross-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#^^##100 \(f_{\varphi(6,\varphi(8,0)+\zeta_0)}(100)\) \(H_{\varphi(6,\varphi(8,0)+\zeta_0)}(100)\)
tethracubor-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#^^###100 \(f_{\varphi(6,\varphi(8,0)+\eta_0)}(100)\) \(H_{\varphi(6,\varphi(8,0)+\eta_0)}(100)\)
tethrateron-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>#^^####100 \(f_{\varphi(6,\varphi(8,0)+\varphi(4,0))}(100)\) \(H_{\varphi(6,\varphi(8,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^5)100 \(f_{\varphi(6,\varphi(8,0)+\varphi(5,0))}(100)\) \(H_{\varphi(6,\varphi(8,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^6)100 \(f_{\varphi(6,\varphi(8,0)+\varphi(6,0))}(100)\) \(H_{\varphi(6,\varphi(8,0)+\varphi(6,0))}(100)\)
tethrahepton-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^7)100 \(f_{\varphi(6,\varphi(8,0)+\varphi(7,0))}(100)\) \(H_{\varphi(6,\varphi(8,0)+\varphi(7,0))}(100)\)
tethra-ogdon-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^8)100 \(f_{\varphi(6,\varphi(8,0)2)}(100)\) \(H_{\varphi(6,\varphi(8,0)2)}(100)\)
territethra-ogdon-turreted-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^8)^^#100 \(f_{\varphi(6,\varepsilon_{\varphi(8,0)+1})}(100)\) \(H_{\varphi(6,\varepsilon_{\varphi(8,0)+1})}(100)\)
dustaculated-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^6)>(#^^#^8)^^(#^6)100 \(f_{\varphi(6,\varphi(6,\varphi(8,0)+1))}(100)\) \(H_{\varphi(6,\varphi(6,\varphi(8,0)+1))}(100)\)
tristaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)3 \(f_{\varphi(7,\varphi(8,0)+1)[3]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[3]}(100)\)
tetrastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)4 \(f_{\varphi(7,\varphi(8,0)+1)[4]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[4]}(100)\)
pentastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)5 \(f_{\varphi(7,\varphi(8,0)+1)[5]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[5]}(100)\)
hexastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)6 \(f_{\varphi(7,\varphi(8,0)+1)[6]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[6]}(100)\)
heptastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)7 \(f_{\varphi(7,\varphi(8,0)+1)[7]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[7]}(100)\)
ogdastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)8 \(f_{\varphi(7,\varphi(8,0)+1)[8]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[8]}(100)\)
ennastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)9 \(f_{\varphi(7,\varphi(8,0)+1)[9]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[9]}(100)\)
dekastaculated-terrihexerated-tethra-ogdon E100((#^^#^8)^^#^7)10 \(f_{\varphi(7,\varphi(8,0)+1)[10]}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)[10]}(100)\)
terrihepterated-tethra-ogdon E100((#^^#^8)^^#^7)100 \(f_{\varphi(7,\varphi(8,0)+1)}(100)\) \(H_{\varphi(7,\varphi(8,0)+1)}(100)\)
terrible terrisquared-terricubed-territesserated-terripenterated-terrihexerated-terrihepterated-tethra-ogdon E100(((((((#^^#^8)^^#^7)^^#^6)^^#^5)^^####)^^###)^^##)^^#100
two-ex-terrihepterated-tethra-ogdon E100(((#^^#^8)^^#^7)^^#^7)100 \(f_{\varphi(7,\varphi(8,0)+2)}(100)\) \(H_{\varphi(7,\varphi(8,0)+2)}(100)\)
three-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(3)100 \(f_{\varphi(7,\varphi(8,0)+3)}(100)\) \(H_{\varphi(7,\varphi(8,0)+3)}(100)\)
four-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(4)100 \(f_{\varphi(7,\varphi(8,0)+4)}(100)\) \(H_{\varphi(7,\varphi(8,0)+4)}(100)\)
five-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(5)100 \(f_{\varphi(7,\varphi(8,0)+5)}(100)\) \(H_{\varphi(7,\varphi(8,0)+5)}(100)\)
six-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(6)100 \(f_{\varphi(7,\varphi(8,0)+6)}(100)\) \(H_{\varphi(7,\varphi(8,0)+6)}(100)\)
seven-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(7)100 \(f_{\varphi(7,\varphi(8,0)+7)}(100)\) \(H_{\varphi(7,\varphi(8,0)+7)}(100)\)
eight-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(8)100 \(f_{\varphi(7,\varphi(8,0)+8)}(100)\) \(H_{\varphi(7,\varphi(8,0)+8)}(100)\)
nine-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(9)100 \(f_{\varphi(7,\varphi(8,0)+9)}(100)\) \(H_{\varphi(7,\varphi(8,0)+9)}(100)\)
ten-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(10)100 \(f_{\varphi(7,\varphi(8,0)+10)}(100)\) \(H_{\varphi(7,\varphi(8,0)+10)}(100)\)
hundred-ex-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#100 \(f_{\varphi(7,\varphi(8,0)+\omega)}(100)\) \(H_{\varphi(7,\varphi(8,0)+\omega)}(100)\)
godgahlah-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#^#100 \(f_{\varphi(7,\varphi(8,0)+\omega^\omega)}(100)\) \(H_{\varphi(7,\varphi(8,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#^^#100 \(f_{\varphi(7,\varphi(8,0)+\varepsilon_0)}(100)\) \(H_{\varphi(7,\varphi(8,0)+\varepsilon_0)}(100)\)
tethracross-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#^^##100 \(f_{\varphi(7,\varphi(8,0)+\zeta_0)}(100)\) \(H_{\varphi(7,\varphi(8,0)+\zeta_0)}(100)\)
tethracubor-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#^^###100 \(f_{\varphi(7,\varphi(8,0)+\eta_0)}(100)\) \(H_{\varphi(7,\varphi(8,0)+\eta_0)}(100)\)
tethrateron-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>#^^####100 \(f_{\varphi(7,\varphi(8,0)+\varphi(4,0))}(100)\) \(H_{\varphi(7,\varphi(8,0)+\varphi(4,0))}(100)\)
tethrapeton-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^5)100 \(f_{\varphi(7,\varphi(8,0)+\varphi(5,0))}(100)\) \(H_{\varphi(7,\varphi(8,0)+\varphi(5,0))}(100)\)
tethrahexon-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^6)100 \(f_{\varphi(7,\varphi(8,0)+\varphi(6,0))}(100)\) \(H_{\varphi(7,\varphi(8,0)+\varphi(6,0))}(100)\)
tethrahepton-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^7)100 \(f_{\varphi(7,\varphi(8,0)+\varphi(7,0))}(100)\) \(H_{\varphi(7,\varphi(8,0)+\varphi(7,0))}(100)\)
tethra-ogdon-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^8)100 \(f_{\varphi(7,\varphi(8,0)2)}(100)\) \(H_{\varphi(7,\varphi(8,0)2)}(100)\)
territethra-ogdon-turreted-terrihepterated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^8)^^#100 \(f_{\varphi(7,\varepsilon_{\varphi(8,0)+1})}(100)\) \(H_{\varphi(7,\varepsilon_{\varphi(8,0)+1})}(100)\)
dustaculated-terrihexerated-tethra-ogdon E100(#^^#^8)^^(#^7)>(#^^#^8)^^(#^7)100 \(f_{\varphi(7,\varphi(7,\varphi(8,0)+1))}(100)\) \(H_{\varphi(7,\varphi(7,\varphi(8,0)+1))}(100)\)
tristaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)3 \(f_{\varphi(8,1)[3]}(100)\) \(H_{\varphi(8,1)[3]}(100)\)
tetrastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)4 \(f_{\varphi(8,1)[4]}(100)\) \(H_{\varphi(8,1)[4]}(100)\)
pentastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)5 \(f_{\varphi(8,1)[5]}(100)\) \(H_{\varphi(8,1)[5]}(100)\)
hexastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)6 \(f_{\varphi(8,1)[6]}(100)\) \(H_{\varphi(8,1)[6]}(100)\)
heptastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)7 \(f_{\varphi(8,1)[7]}(100)\) \(H_{\varphi(8,1)[7]}(100)\)
ogdastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)8 \(f_{\varphi(8,1)[8]}(100)\) \(H_{\varphi(8,1)[8]}(100)\)
ennastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)9 \(f_{\varphi(8,1)[9]}(100)\) \(H_{\varphi(8,1)[9]}(100)\)
dekastaculated-terrihepterated-tethra-ogdon E100((#^^#^8)^^#^8)10 \(f_{\varphi(8,1)[10]}(100)\) \(H_{\varphi(8,1)[10]}(100)\)
tethradu-ogdon E100((#^^#^8)^^#^8)100 \(f_{\varphi(8,1)}(100)\) \(H_{\varphi(8,1)}(100)\)
tethratri-ogdton E100(((#^^#^8)^^#^8)^^#^8)100 \(f_{\varphi(8,2)}(100)\) \(H_{\varphi(8,2)}(100)\)
tethratetra-ogdton E100((((#^^#^8)^^#^8)^^#^8)^^#^8)100 \(f_{\varphi(8,3)}(100)\) \(H_{\varphi(8,3)}(100)\)
tethrapenta-ogdton E100#^^(#^8)>#5 \(f_{\varphi(8,4)}(100)\) \(H_{\varphi(8,4)}(100)\)
tethrahexa-ogdton E100#^^(#^8)>#6 \(f_{\varphi(8,5)}(100)\) \(H_{\varphi(8,5)}(100)\)
tethrahepta-ogdton E100#^^(#^8)>#7 \(f_{\varphi(8,6)}(100)\) \(H_{\varphi(8,6)}(100)\)
tethra-octa-ogdon E100#^^(#^8)>#8 \(f_{\varphi(8,7)}(100)\) \(H_{\varphi(8,7)}(100)\)
tethra-enna-ogdon E100#^^(#^8)>#9 \(f_{\varphi(8,8)}(100)\) \(H_{\varphi(8,8)}(100)\)
tethradekaa-ogdon E100#^^(#^8)>#10 \(f_{\varphi(8,9)}(100)\) \(H_{\varphi(8,9)}(100)\)
tethra-endeka-ogdon E100#^^(#^8)>#11 \(f_{\varphi(8,10)}(100)\) \(H_{\varphi(8,10)}(100)\)
tethradodeka-ogdon E100#^^(#^8)>#12 \(f_{\varphi(8,11)}(100)\) \(H_{\varphi(8,11)}(100)\)
tethra-icosa-ogdon E100#^^(#^8)>#20 \(f_{\varphi(8,19)}(100)\) \(H_{\varphi(8,19)}(100)\)
tethriter-ogdon E100#^^(#^8)>#100 \(f_{\varphi(8,\omega)}(100)\) \(H_{\varphi(8,\omega)}(100)\)
godgahlah-turreted-tethra-ogdon E100#^^(#^8)>#^#100 \(f_{\varphi(8,\omega^\omega)}(100)\) \(H_{\varphi(8,\omega^\omega)}(100)\)
tethrathoth-turreted-tethra-ogdon E100#^^(#^8)>#^^#100 \(f_{\varphi(8,\varepsilon_0)}(100)\) \(H_{\varphi(8,\varepsilon_0)}(100)\)
tethracross-turreted-tethra-ogdon E100#^^(#^8)>#^^##100 \(f_{\varphi(8,\zeta_0)}(100)\) \(H_{\varphi(8,\zeta_0)}(100)\)
tethracubor-turreted-tethra-ogdon E100#^^(#^8)>#^^###100 \(f_{\varphi(8,\eta_0)}(100)\) \(H_{\varphi(8,\eta_0)}(100)\)
tethrateron-turreted-tethra-ogdon E100#^^(#^8)>#^^####100 \(f_{\varphi(8,\varphi(4,0))}(100)\) \(H_{\varphi(8,\varphi(4,0))}(100)\)
tethrapeton-turreted-tethra-ogdon E100#^^(#^8)>(#^^#^5)100 \(f_{\varphi(8,\varphi(5,0))}(100)\) \(H_{\varphi(8,\varphi(5,0))}(100)\)
tethrahexon-turreted-tethra-ogdon E100#^^(#^8)>(#^^#^6)100 \(f_{\varphi(8,\varphi(6,0))}(100)\) \(H_{\varphi(8,\varphi(6,0))}(100)\)
tethrahepton-turreted-tethra-ogdon E100#^^(#^8)>(#^^#^7)100 \(f_{\varphi(8,\varphi(7,0))}(100)\) \(H_{\varphi(8,\varphi(7,0))}(100)\)
tethrathoth-turreted-tethracross-turreted-tethracubor-turreted-tethrateron-turreted-tethrapeton-turreted-tethrahexon-turreted-tethrahepton-turrreted-tethra-ogdon E100#^^(#^8)>#^^(#^7)>#^^(#^6)>#^^(#^5)>#^^####>#^^###>#^^##>#^^##>#^^#100
dustaculated-tethra-ogdon E100#^^(#^8)>#^^(#^8)100 \(f_{\varphi(8,\varphi(8,0))}(100)\) \(H_{\varphi(8,\varphi(8,0))}(100)\)
tristaculated-tethra-ogdon E100#^^(#^8)>#^^(#^8)>#^^(#^8)100 \(f_{\varphi(8,\varphi(8,\varphi(8,0)))}(100)\) \(H_{\varphi(8,\varphi(8,\varphi(8,0)))}(100)\)
tetrastaculated-tethra-ogdon E100(#^^#^9)4 \(f_{\varphi(9,0)[4]}(100)\) \(H_{\varphi(9,0)[4]}(100)\)
pentastaculated-tethra-ogdon E100(#^^#^9)5 \(f_{\varphi(9,0)[5]}(100)\) \(H_{\varphi(9,0)[5]}(100)\)
hexastaculated-tethra-ogdon E100(#^^#^9)6 \(f_{\varphi(9,0)[6]}(100)\) \(H_{\varphi(9,0)[6]}(100)\)
heptastaculated-tethra-ogdon E100(#^^#^9)7 \(f_{\varphi(9,0)[7]}(100)\) \(H_{\varphi(9,0)[7]}(100)\)
ogdastaculated-tethra-ogdon E100(#^^#^9)8 \(f_{\varphi(9,0)[8]}(100)\) \(H_{\varphi(9,0)[8]}(100)\)
ennastaculated-tethra-ogdon E100)#^^#^9)9 \(f_{\varphi(9,0)[9]}(100)\) \(H_{\varphi(9,0)[9]}(100)\)
dekastaculated-tethra-ogdon E100(#^^#^9)10 \(f_{\varphi(9,0)[10]}(100)\) \(H_{\varphi(9,0)[10]}(100)\)
icosastaculated-tethra-ogdon E100(#^^#^9)20 \(f_{\varphi(9,0)[20]}(100)\) \(H_{\varphi(9,0)[20]}(100)\)
triantastaculated-tethra-ogdon E100(#^^#^9)30 \(f_{\varphi(9,0)[30]}(100)\) \(H_{\varphi(9,0)[30]}(100)\)
sarantastaculated-tethra-ogdon E100(#^^#^9)40 \(f_{\varphi(9,0)[40]}(100)\) \(H_{\varphi(9,0)[40]}(100)\)
penintastaculated-tethra-ogdon E100(#^^#^9)50 \(f_{\varphi(9,0)[50]}(100)\) \(H_{\varphi(9,0)[50]}(100)\)
exintastaculated-tethra-ogdon E100(#^^#^9)60 \(f_{\varphi(9,0)[60]}(100)\) \(H_{\varphi(9,0)[60]}(100)\)
ebdomintastaculated-tethra-ogdon E100(#^^#^9)70 \(f_{\varphi(9,0)[70]}(100)\) \(H_{\varphi(9,0)[70]}(100)\)
ogdontastaculated-tethra-ogdon E100(#^^#^9)80 \(f_{\varphi(9,0)[80]}(100)\) \(H_{\varphi(9,0)[80]}(100)\)
enenintastaculated-tethra-ogdon E100(#^^#^9)90 \(f_{\varphi(9,0)[90]}(100)\) \(H_{\varphi(9,0)[90]}(100)\)

Some names of the numbers of this regiment are based on names of other Saibian's numbers, such as:

Sources

  1. Sbiis Saibian, Extended Cascading-E Numbers Part II - Large Numbers
Saibian's regiments

Hyper-E regiments: Guppy regiment · Grangol regiment · Greagol regiment · Gigangol regiment · Gorgegol regiment · Gulgol regiment · Gaspgol regiment · Ginorgol regiment · Gargantuul regiment · Googondol regiment
Extended Hyper-E regiments: Gugold regiment · Graatagold regiment · Greegold regiment · Grinningold regiment · Golaagold regiment · Gruelohgold regiment · Gaspgold regiment · Ginorgold regiment · Gargantuuld regiment · Googondold regiment · Gugolthra regiment · Throogol regiment · Tetroogol regiment · Pentoogol regiment · Hexoogol regiment · Heptoogol regiment · Ogdoogol regiment · Entoogol regiment · Dektoogol regiment
Cascading-E regiments: Godgahlah regiment · Gridgahlah regiment · Kubikahlah regiment · Quarticahlah regiment · Quinticahlah regiment · Sexticahlah regiment · Septicahlah regiment · Octicahlah regiment · Nonicahlah regiment · Decicahlah regiment · Godgathor regiment · Gralgathor regiment · Thraelgathor regiment · Terinngathor regiment · Pentaelgathor regiment · Hexaelgathor regiment · Heptaelgathor regiment · Octaelgathor regiment · Ennaelgathor regiment · Dekaelgathor regiment · Godtothol regiment · Godtertol regiment · Godtopol regiment · Godhathor regiment · Godheptol regiment · Godoctol regiment · Godentol regiment · Goddekathol regiment
Extended Cascading-E regiments: Tethrathoth regiment · Monster-Giant regiment · Tethriterator regiment · Tethracross regiment · Tethracubor regiment · Tethrateron regiment · Tethrapeton regiment · Tethrahexon regiment · Tethrahepton regiment · Tethra-ogdon regiment · Tethrennon regiment · Tethradekon regiment · Tethratope regiment · Pentacthulhum regiment · Pentacthulcross regiment · Pentacthulcubor regiment · Pentacthulteron regiment · Pentacthulpeton regiment · Pentacthulhexon regiment · Pentacthulhepton regiment · Pentacthul-ogdon regiment · Pentacthulennon regiment · Pentacthuldekon regiment · Pentacthultope regiment · Hexacthulhum super regiment · Heptacthulhum super regiment · Ogdacthulhum super regiment · Ennacthulhum super regiment · Dekacthulhum super regiment

Community content is available under CC-BY-SA unless otherwise noted.