The tethra-ennaelgathor is equal to E100(#^^#)^#^#^#9 in Extended Cascading-E Notation.[1] The term was coined by Sbiis Saibian.

Etymology

The name of this number is based on the number "tethrathoth" and the number "ennaelgathor".

Approximations in other notations

Notation Approximation
BEAF \(\{100,100(X \uparrow\uparrow X*X^{X^9}) 2\}\)[2]
Bird's array notation \(\{100,100 [1,1,1,1,1,1,1,1,1,2 \backslash 2] 2\}\)
Hyperfactorial array notation \(100![1,[1,[1,1,10],1,1,2],[1],1,2]\)
Fast-growing hierarchy \(f_{\varepsilon_0^{\omega^{\omega^9}}}(100)\)
Hardy hierarchy \(H_{\varepsilon_0^{\varepsilon_0^{\omega^{\omega^9}}}}(100)\)
Slow-growing hierarchy \(g_{\vartheta(\varepsilon_{\Omega2}^{\Omega^{\Omega^8\omega}})}(100)\)

Sources

  1. Saibian, Sbiis. 4.3.7 Extended Cascading-E Numbers Part IOne to Infinity. Retrieved 2017-02-15.
  2. Using particular notation \(\{a,b (A) 2\} = A\ \&\ a\) with prime b.

See also

Community content is available under CC-BY-SA unless otherwise noted.