11,329
pages

Superior Bigrand Enormabixul is equal to ((...((200![200(2)200(2)200,200])![200(2)200(2)200,200])...)![200(2)200(2)200,200])![200(2)200(2)200,200] (with Superior Grand Enormabixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on the word "superior" and the number "Bigrand Enormabixul".

Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg4]200[1\neg4]200,200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/3\sim2]200[1/3\sim2]200,200]2\}$$
BEAF $$\{200,4,202(\{X,\{X,199X^2+199X,1,1,3\}+199X,1,1,2\})2\}$$[2]
Fast-growing hierarchy (using this system of FSes) $$f_{\varphi(1,0,0,\varphi(2,0,0,\omega199+199)+199)+200}^2(f_{\varphi(1,0,0,\varphi(2,0,0,\omega199+199)+199)+199}(200))$$
Hardy hierarchy $$H_{\varphi(1,0,0,\varphi(2,0,0,\omega199+199)+199)\omega^{200}2+\varphi(1,0,0,\varphi(2,0,0,\omega199+199)+199)\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\vartheta(\varphi(1,0,0,\varphi(2,0,0,\Omega200+199)+199)+201)}(3)$$

Sources

1. Lawrence Hollom's large numbers site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.