11,052 Pages

Here is a list of numbers coined by Googology Wiki user Licorneuhh with Revised Pehan Notation.

## Definition

Fyn group :

Fyn = 10(76) = 76↑76↑76↑..76↑8746474077673309776935612593657197804920408724171988176134637452471795240430711996221167510240964964895751005623527652307300740369881589455257676..767676

Unfyn = 11(76) = 1076(76) = 10(10(10...(10(76)...)) with 76 ()'s = 1075(Fyn)
Deufyn = 12(76)
Troifyn = 13(76)
Bi-Fyn = 20(76) = 176(76)
Bi-Unfyn = 21(76)
Bi-Deufyn = 22(76)
Bi-Troifyn = 23(76)
Tri-Fyn = 30(76)
Tri-Unfyn = 31(76)
Tri-Deufyn = 32(76)
Tri-Troifyn = 33(76)
You can continue with the Quadri-Fyn, Quinti-Fyn etc...

Greps group :

Greps = |1|0(76) = 7676(76)
Ungreps = |1|1(76)
Deugreps = |1|2(76)
Troigreps = |1|3(76)
Bigreps = |2|0(76)
Trigreps = |3|0(76)
Grepss = 310(76) = |76|76(76)
All extensions apply.
Grepsss = 410(6) = 37676(76)
All extensions apply.
Grepssss = 510(76)
All extensions apply.
Grep-5-s = 610(76)
All extensions apply.

Risitas group :

Aya = 10(76) = 767676(76)
Ayaa = 10(76) = 767676(76)
Ayaaa = 10(76) = 767676(76)
Ayaaaa = 10(76) = 767676(76)

Issou group :

Issou = 1[0,1]0(76) = 767676(76)
Issouplex = 1[0,0,1]0(76) = 7676[76,76]76(76)
Issouduplex = 1[0,0,0,1]0(76) = 7676[76,76,76]76(76)
Issoutriplex = 1[0,0,0,0,1]0(76) = 7676[76,76,76,76]76(76)

Lvapofr group :

Lvapofr = 1[ ]0(76) = 7676[76,76,76...,76]76(76) (w/ 76 76's)
Lvapofrbi = 1[[]]0(76) = 7676[ [76,76,76...,76]]76(76) (w/ 76 76's)
Lvapofrtri = 1[(4)]0(76) = 7676[[[76,76,76...,76]]]76(76) (w/ 76 76's)
Lvapofrtet = 1[(5)]0(76) = 7676[(4)[76,76,76...,76]]76(76) (w/ 76 76's)

Hen group :

Kahen = 1[ ] 0(76) = 7676[(76)[76,76,76...,76]]76(76) (w/ 76 76's)
Kakahen = 1[ ] [ ] 0(76) = 7676[ ] [(76)[76,76,76...,76]]76(76) (w/ 76 76's)
Kakakahen = 1[ ] [ ] [ ] 0(76) = 7676[ ] [ ] [(76)[76,76,76...,76]]76(76) (w/ 76 76's)
4-Kahen = Kakakahen = 1[ ]4 0(76) = 7676[ ] [ ] [ ] [(76)[76,76,76...,76]]76(76) (w/ 76 76's)
5-Kahen = Kakakahen = 1[ ]5 0(76) = 7676[ ]4[(76)[76,76,76...,76]]76(76) (w/ 76 76's)
Prasthen = 1[{2}1]0(76) = 7676[ ]76[(76)[76,76,76...,76]]76(76) (w/ 76 76's)
Prastplexhen = 1[{3}1]0(76) = 7676[{2} ]76[(76)[{2}76,76,76...,76]]76(76) (w/ 76 76's)

Prastduplexhen = 1[{4}1]0(76) = 7676[{3} ]76[(76)[{3}76,76,76...,76]]76(76) (w/ 76 76's)

Choupi group :

Nours = 1*0(76) = 7676[{76} ]75 [(76)[{76}76,76,76...,76]]76(76) (w/ 76 76's)
Nounours = 1**0(76) = 7676*[{76} ]75 [(76)[{76}76,76,76...,76]]76(76) (w/ 76 76's)
Nounounours = 1***0(76) = 7676**[{76} ]75 [(76)[{76}76,76,76...,76]]76(76) (w/ 76 76's)
Grand Ours = 1*Nours0(76) = 7676*(Nours)-1[{76} ]75 [(76)[{76}76,76,76...,76]]76(76) (w/ 76 76's)
Grand Grand Ours = 1*Grand Ours0(76) = 7676*(Grand Ours)-1[{76} ]75 [(76)[{76}76,76,76...,76]]76(76) (w/ 76 76's)

Datz group :

Lun = 1[0,1]0(76)

Mar = 1[0,0,1]0(76)

Mer = 1[0,0,0,1]0(76)

Jeu = 1[0,0,0,0,1]0(76)

Ven = 1[0,0,0,0,0,1]0(76)

Sam = 1[0,0,0,0,0,0,1]0(76)

Dim = 1[0,0,0,0,0,0,0,1]0(76)

Wek = 1[]0(76)

Moth = 1[] 0(76)

Yer = 1[{2}1]0(76)

C-tury = 130(76)

Boxes :

Cardboard = ȝ(76)
Box = ȝ76(76)
Strongbox = ȝȝȝ..ȝ76(76)..(76)(76)(76) with 75 ȝ's.

## Updates

An update has been done, replacing the former "Daily group" by the "Datz group" and adding the number "Cardboard" in the "Boxes" group

Community content is available under CC-BY-SA unless otherwise noted.