The quinquagintinongentillion is equal to \(10^{2853}\). The term was coined by Sbiis Saibian.[1] The long scale version of this number is equal to \(10^{5700}\).

The probability that there is no universal common ancestor of all current life on Earth has been estimated to be 1 in \(10^{2860}\).

Approimations

For short scale:

Notation Lower bound Upper bound
Scientific notation \(1\times10^{2853}\)
Arrow notation \(10\uparrow2853\)
Steinhaus-Moser Notation 957[3] 958[3]
Copy notation 9[2853] 10[1427]
Taro's multivariable Ackermann function A(3,9474) A(3,9475)
Pound-Star Notation #*((7))*30 #*((8))*30
BEAF {10,2853}
Hyper-E notation E2853
Bashicu matrix system (0)(1)[3] (0)(1)[4]
Hyperfactorial array notation 1094! 1095!
Fast-growing hierarchy \(f_2(9464)\) \(f_2(9465)\)
Hardy hierarchy \(H_{\omega^2}(9464)\) \(H_{\omega^2}(9465)\)
Slow-growing hierarchy \(g_{\omega^{\omega^32+\omega^28+\omega5+3}}(10)\)

For long scale:

Notation Lower bound Upper bound
Scientific notation \(1\times10^{5700}\)
Arrow notation \(10\uparrow5700\)
Steinhaus-Moser Notation 1756[3] 1757[3]
Copy notation 9[5700] 1[5701]
Taro's multivariable Ackermann function A(3,18931) A(3,18932)
Pound-Star Notation #*((2357))*40 #*((2358))*40
BEAF {10,5700}
Hyper-E notation E5700
Bashicu matrix system (0)(1)[3] (0)(1)[4]
Hyperfactorial array notation 1989! 1990!
Fast-growing hierarchy \(f_2(18920)\) \(f_2(18921)\)
Hardy hierarchy \(H_{\omega^2}(18920)\) \(H_{\omega^2}(18921)\)
Slow-growing hierarchy \(g_{\omega^{\omega^35+\omega^27}}(10)\)

Sources

Community content is available under CC-BY-SA unless otherwise noted.