10,974 Pages

The quingentillion is equal to 101,503 in short scale.[1] This number is also equal to 103,000 in the long scale of naming zillions, accepted in French and Germany.

## Decimal expansion

Written out in decimal form quingentillion (in the short scale) is:

1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

In long scale:

1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

## Approximations

For short scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{1503}$$
Arrow notation $$10\uparrow1503$$
Steinhaus-Moser Notation 548[3] 549[3]
Copy notation 9[1503] 10[752]
Chained arrow notation $$10\rightarrow1503$$
Taro's multivariable Ackermann function A(3,4989) A(3,4990)
Pound-Star Notation #*((2857))*22 #*((2858))*22
PlantStar's Debut Notation [893] [894]
BEAF & Bird's array notation {10,1503}
Hyper-E notation E1503
Bashicu matrix system (0)(1)[3] (0)(1)[4]
Hyperfactorial array notation 634! 635!
Strong array notation s(10,1503)
Fast-growing hierarchy $$f_2(4\,980)$$ $$f_2(4\,981)$$
Hardy hierarchy $$H_{\omega^2}(4\,980)$$ $$H_{\omega^2}(4\,981)$$
Slow-growing hierarchy $$g_{\omega^{\omega^3+\omega^{2}5+3}}(10)$$

For long scale:

Notation Lower bound Upper bound
Scientific notation $$1\times10^{3000}$$
Arrow notation $$10\uparrow3000$$
Steinhaus-Moser Notation 1000[3]
Copy notation 9[3000] 1[3001]
Chained arrow notation $$10\rightarrow3000$$
Taro's multivariable Ackermann function A(3,9962) A(3,9963)
Pound-Star Notation #*((2388))*30 #*((2389))*30
PlantStar's Debut Notation [1784] [1785]
BEAF & Bird's array notation {10,3000}
Hyper-E notation E3000
Bashicu matrix system (0)(1)[3] (0)(1)[4]
Hyperfactorial array notation 1142! 1143!
Fast-growing hierarchy $$f_2(9952)$$ $$f_2(9953)$$
Hardy hierarchy $$H_{\omega^2}(9952)$$ $$H_{\omega^2}(9953)$$
Slow-growing hierarchy $$g_{\omega^{\omega^33}}(10)$$