## FANDOM

10,410 Pages

The quadrigoogol is equal to 4$$\cdot$$googol using hypermathematics.[1] It is equal to $$10^{403}+10^{302}+10^{201}+10^{100}$$ using normal mathematics.

Its prime factorization is 2100 × 5100 × 11 × 1012 × 607 × 809 × 1,213 × 1,327,067,281 × 3,679,329,001 × 19,384,130,081 × 12,793,360,409,007,449 × 4,908,990,488,743,183,603,681 × 5,383,539,446,793,990,416,488,818,114,381,662,511,041 × 147,987,024,898,557,331,825,270,928,295,100,820,916,509 × 274,709,671,055,935,535,763,734,628,625,616,947,603,714,681,537,231,287,179,261 × 11,500,490,394,117,824,585,468,796,003,575,163,076,836,624,586,334,794,818,271,756,072,956,027,758,946,488,969.

## Approximations

Notation Lower bound Upper bound
Scientific notation $$1\times10^{403}$$ $$1.001\times10^{403}$$
Arrow notation $$10\uparrow403$$ $$35\uparrow261$$
Steinhaus-Moser Notation 178[3] 179[3]
Copy notation 9[403] 10[202]
Taro's multivariable Ackermann function A(3,1335) A(3,1336)
Pound-Star Notation #*((8))*13 #*((9))*13
BEAF {10,403} {35,261}
Hyper-E notation E403 2E403
Bashicu matrix system (0)(0)(0)(0)(0)(0)(0)[1407] (0)(0)(0)(0)(0)(0)(0)[1408]
Hyperfactorial array notation 212! 213!
Fast-growing hierarchy $$f_2(1328)$$ $$f_2(1329)$$
Hardy hierarchy $$H_{\omega^2}(1328)$$ $$H_{\omega^2}(1329)$$
Slow-growing hierarchy $$g_{\omega^{\omega^24+3}+\omega^{\omega^23+2}+\omega^{\omega^22+1}+\omega^{\omega^2}}(10)$$

## Sources

1. A googol is a tiny dot