10,974 Pages

The pentacthulcubor regiment is a series of numbers from E100#^^^###100 to E100#^^^####90 defined using Extended Cascading-E Notation (i.e. beginning from pentacthulcubor and up to enenintastaculated pentacthulcubor).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Pentacthulcross regiment Pentacthulteron regiment

## List of numbers of the regiment

...

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation)
pentacthulcubor E100#^^^###100 $$f_{\varphi(1,2,0)}(100)$$
grand pentacthulcubor E100#^^^###100#2 $$f_{\varphi(1,2,0)}^2(100)$$
grangol-carta-pentacthulcubor E100#^^^###100#100 $$f_{\varphi(1,2,0)+1}(100)$$
godgahlah-carta-pentacthulcubor E100#^^^###100#^#100 $$f_{\varphi(1,2,0)+\omega^\omega}(100)$$
tethrathoth-carta-pentacthulcubor E100#^^^###100#^^#100 $$f_{\varphi(1,2,0)+\varepsilon_0}(100)$$
tethracross-carta-pentacthulcubor E100#^^^###100#^^##100 $$f_{\varphi(1,2,0)+\zeta_0}(100)$$
tethracubor-carta-pentacthulcubor E100#^^^###100#^^###100 $$f_{\varphi(1,2,0)+\eta_0}(100)$$
tethrateron-carta-pentacthulcubor E100#^^^###100#^^####100 $$f_{\varphi(1,2,0)+\varphi(4,0)}(100)$$
tethrapeton-carta-pentacthulcubor E100#^^^###100(#^^#^5)100 $$f_{\varphi(1,2,0)+\varphi(5,0)}(100)$$
tethrahexon-carta-pentacthulcubor E100#^^^###100(#^^#^6)100 $$f_{\varphi(1,2,0)+\varphi(6,0)}(100)$$
tethrahepton-carta-pentacthulcubor E100#^^^###100(#^^#^7)100 $$f_{\varphi(1,2,0)+\varphi(7,0)}(100)$$
tethra-ogdon-carta-pentacthulcubor E100#^^^###100(#^^#^8)100 $$f_{\varphi(1,2,0)+\varphi(8,0)}(100)$$
tethrennon-carta-pentacthulcubor E100#^^^###100(#^^#^9)100 $$f_{\varphi(1,2,0)+\varphi(9,0)}(100)$$
tethradekon-carta-pentacthulcubor E100#^^^###100(#^^#^10)100 $$f_{\varphi(1,2,0)+\varphi(10,0)}(100)$$
tethratope-carta-pentacthulcubor E100#^^^###100#^^#^#100 $$f_{\varphi(1,2,0)+\varphi(\omega,0)}(100)$$
tethrarxitri-carta-pentacthulcubor E100#^^^###100#^^#^^#100 $$f_{\varphi(1,2,0)+\varphi(\varepsilon_0,0)}(100)$$
pentacthulhum-carta-pentacthulcubor E100#^^^###100#^^^#100 $$f_{\varphi(1,2,0)+\Gamma_0}(100)$$
pentacthulcross-carta-pentacthulcubor E100#^^^###100#^^^##100 $$f_{\varphi(1,2,0)+\varphi(1,1,0)}(100)$$
pentacthulcubor-carta-pentacthulcubor E100#^^^###100#^^^###100 $$f_{\varphi(1,2,0)2}(100)$$
pentacthulcubor-by-hyperion E100#^^^###*#100 $$f_{\varphi(1,2,0)\omega}(100)$$
pentacthulcubor-by-godgahlah E100#^^^###*#^#100 $$f_{\varphi(1,2,0)\omega^\omega}(100)$$
pentacthulcubor-by-tethrathoth E100#^^^###*#^^#100 $$f_{\varphi(1,2,0)\varepsilon_0}(100)$$
pentacthulcubor-by-tethracross E100#^^^###*#^^##100 $$f_{\varphi(1,2,0)\zeta_0}(100)$$
pentacthulcubor-by-tethracubor E100#^^^###*#^^###100 $$f_{\varphi(1,2,0)\eta_0}(100)$$
pentacthulcubor-by-tethrateron E100#^^^###*#^^####100 $$f_{\varphi(1,2,0)\times\varphi(4,0)}(100)$$
pentacthulcubor-by-tethrapeton E100#^^^###*(#^^#^5)100 $$f_{\varphi(1,2,0)\times\varphi(5,0)}(100)$$
pentacthulcubor-by-tethrahexon E100#^^^###*(#^^#^6)100 $$f_{\varphi(1,2,0)\times\varphi(6,0)}(100)$$
pentacthulcubor-by-tethrahepton E100#^^^###*(#^^#^7)100 $$f_{\varphi(1,2,0)\times\varphi(7,0)}(100)$$
pentacthulcubor-by-tethra-ogdon E100#^^^###*(#^^#^8)100 $$f_{\varphi(1,2,0)\times\varphi(8,0)}(100)$$
pentacthulcubor-by-tethrennon E100#^^^###*(#^^#^9)100 $$f_{\varphi(1,2,0)\times\varphi(9,0)}(100)$$
pentacthulcubor-by-tethradekon E100#^^^###*(#^^#^10)100 $$f_{\varphi(1,2,0)\times\varphi(10,0)}(100)$$
pentacthulcubor-by-tethratope E100#^^^###*#^^#^#100 $$f_{\varphi(1,2,0)\times\varphi(\omega,0)}(100)$$
pentacthulcubor-by-tethrarxitri E100#^^^###*#^^#^^#100 $$f_{\varphi(1,2,0)\times\varphi(\varepsilon_0,0)}(100)$$
pentacthulcubor-by-pentacthulhum E100#^^^###*#^^^#100 $$f_{\varphi(1,2,0)\times\Gamma_0}(100)$$
pentacthulcubor-by-pentacthulcross E100#^^^###*#^^^##100 $$f_{\varphi(1,2,0)\times\varphi(1,1,0)}(100)$$
deutero-pentacthulcubor E100#^^^###*#^^^###100 $$f_{\varphi(1,2,0)^2}(100)$$
trito-pentacthulcubor E100#^^^###*#^^^###*#^^^###100 $$f_{\varphi(1,2,0)^3}(100)$$
teterto-pentacthulcubor E100#^^^###*#^^^###*#^^^###*#^^^###100

= E100(#^^^###)^#4

$$f_{\varphi(1,2,0)^4}(100)$$
pepto-pentacthulcubor E100(#^^^###)^#5 $$f_{\varphi(1,2,0)^5}(100)$$
exto-pentacthulcubor E100(#^^^###)^#6 $$f_{\varphi(1,2,0)^6}(100)$$
epto-pentacthulcubor E100(#^^^###)^#7 $$f_{\varphi(1,2,0)^7}(100)$$
ogdo-pentacthulcubor E100(#^^^###)^#8 $$f_{\varphi(1,2,0)^8}(100)$$
ento-pentacthulcubor E100(#^^^###)^#9 $$f_{\varphi(1,2,0)^9}(100)$$
dekato-pentacthulcubor E100(#^^^###)^#10 $$f_{\varphi(1,2,0)^{10}}(100)$$
pentacthulcuborfact E100(#^^^###)^#100 $$f_{\varphi(1,2,0)^{\omega}}(100)$$
quadratapentacthulcubor E100(#^^^###)^##100 $$f_{\varphi(1,2,0)^{\omega^2}}(100)$$
kubikupentacthulcubor E100(#^^^###)^###100 $$f_{\varphi(1,2,0)^{\omega^3}}(100)$$
quarticupentacthulcubor E100(#^^^###)^####100 $$f_{\varphi(1,2,0)^{\omega^4}}(100)$$
quinticupentacthulcubor E100(#^^^###)^(#^5)100 $$f_{\varphi(1,2,0)^{\omega^5}}(100)$$
sexticupentacthulcubor E100(#^^^###)^(#^6)100 $$f_{\varphi(1,2,0)^{\omega^6}}(100)$$
septicupentacthulcubor E100(#^^^###)^(#^7)100 $$f_{\varphi(1,2,0)^{\omega^7}}(100)$$
octicupentacthulcubor E100(#^^^###)^(#^8)100 $$f_{\varphi(1,2,0)^{\omega^8}}(100)$$
nonicupentacthulcubor E100(#^^^###)^(#^9)100 $$f_{\varphi(1,2,0)^{\omega^9}}(100)$$
decicupentacthulcubor E100(#^^^###)^(#^10)100 $$f_{\varphi(1,2,0)^{\omega^{10}}}(100)$$
pentacthulcubor-ipso-godgahlah E100(#^^^###)^#^#100 $$f_{\varphi(1,2,0)^{\omega^\omega}}(100)$$
pentacthulcubor-ipso-tethrathoth E100(#^^^###)^#^^#100 $$f_{\varphi(1,2,0)^{\varepsilon_0}}(100)$$
pentacthulcubor-ipso-tethracross E100(#^^^###)^#^^##100 $$f_{\varphi(1,2,0)^{\zeta_0}}(100)$$
pentacthulcubor-ipso-tethracubor E100(#^^^###)^#^^###100 $$f_{\varphi(1,2,0)^{\eta_0}}(100)$$
pentacthulcubor-ipso-tethrateron E100(#^^^###)^#^^####100 $$f_{\varphi(1,2,0)^{\varphi(4,0)}}(100)$$
pentacthulcubor-ipso-tethrapeton E100(#^^^###)^(#^^#^5)100 $$f_{\varphi(1,2,0)^{\varphi(5,0)}}(100)$$
pentacthulcubor-ipso-tethrahexon E100(#^^^###)^(#^^#^6)100 $$f_{\varphi(1,2,0)^{\varphi(6,0)}}(100)$$
pentacthulcubor-ipso-tethrahepton E100(#^^^###)^(#^^#^7)100 $$f_{\varphi(1,2,0)^{\varphi(7,0)}}(100)$$
pentacthulcubor-ipso-tethra-ogdon E100(#^^^###)^(#^^#^8)100 $$f_{\varphi(1,2,0)^{\varphi(8,0)}}(100)$$
pentacthulcubor-ipso-tethrennon E100(#^^^###)^(#^^#^9)100 $$f_{\varphi(1,2,0)^{\varphi(9,0)}}(100)$$
pentacthulcubor-ipso-tethradekon E100(#^^^###)^(#^^#^10)100 $$f_{\varphi(1,2,0)^{\varphi(10,0)}}(100)$$
pentacthulcubor-ipso-tethratope E100(#^^^###)^#^^#^#100 $$f_{\varphi(1,2,0)^{\varphi(\omega,0)}}(100)$$
pentacthulcubor-ipso-tethrarxitri E100(#^^^###)^#^^#^^#100 $$f_{\varphi(1,2,0)^{\varphi(\varepsilon_0,0)}}(100)$$
pentacthulcubor-ipso-pentacthulhum E100(#^^^###)^#^^^#100 $$f_{\varphi(1,2,0)^{\Gamma_0}}(100)$$
pentacthulcubor-ipso-pentacthulcross E100(#^^^###)^#^^^##100 $$f_{\varphi(1,2,0)^{\varphi(1,1,0)}}(100)$$
pentacthulcubor-ipso-pentacthulcubor E100(#^^^###)^(#^^^###)100 $$f_{\varphi(1,2,0)\uparrow\uparrow 2}(100)$$
dutetrated pentacthulcubor E100(#^^^###)^(#^^^###)100 $$f_{\varphi(1,2,0)\uparrow\uparrow 2}(100)$$
tritetrated pentacthulcubor E100(#^^^###)^(#^^^###)^(#^^^###)100 $$f_{\varphi(1,2,0)\uparrow\uparrow 3}(100)$$
quadratetrated pentacthulcubor E100(#^^^###)^^#4 $$f_{\varphi(1,2,0)\uparrow\uparrow 4}(100)$$
quinquatetrated pentacthulcubor E100(#^^^###)^^#5 $$f_{\varphi(1,2,0)\uparrow\uparrow 5}(100)$$
sexatetrated pentacthulcubor E100(#^^^###)^^#6 $$f_{\varphi(1,2,0)\uparrow\uparrow 6}(100)$$
septatetrated pentacthulcubor E100(#^^^###)^^#7 $$f_{\varphi(1,2,0)\uparrow\uparrow 7}(100)$$
octatetrated pentacthulcubor E100(#^^^###)^^#8 $$f_{\varphi(1,2,0)\uparrow\uparrow 8}(100)$$
nonatetrated pentacthulcubor E100(#^^^###)^^#9 $$f_{\varphi(1,2,0)\uparrow\uparrow 9}(100)$$
decatetrated pentacthulcubor E100(#^^^###)^^#10 $$f_{\varphi(1,2,0)\uparrow\uparrow 10}(100)$$
terrible pentacthulcubor E100(#^^^###)^^#100 $$f_{\varepsilon_{\varphi(1,2,0)+1}}(100)$$
terrisquared pentacthulcubor E100(#^^^###)^^##100 $$f_{\zeta_{\varphi(1,2,0)+1}}(100)$$
terricubed pentacthulcubor E100(#^^^###)^^###100 $$f_{\eta_{\varphi(1,2,0)+1}}(100)$$
territesserated pentacthulcubor E100(#^^^###)^^####100 $$f_{\varphi(4,\varphi(1,2,0)+1)}(100)$$
terripenterated pentacthulcubor E100(#^^^###)^^(#^5)100 $$f_{\varphi(5,\varphi(1,2,0)+1)}(100)$$
terrihexerated pentacthulcubor E100(#^^^###)^^(#^6)100 $$f_{\varphi(6,\varphi(1,2,0)+1)}(100)$$
terrihepterated pentacthulcubor E100(#^^^###)^^(#^7)100 $$f_{\varphi(7,\varphi(1,2,0)+1)}(100)$$
terriocterated pentacthulcubor E100(#^^^###)^^(#^8)100 $$f_{\varphi(8,\varphi(1,2,0)+1)}(100)$$
terriennerated pentacthulcubor E100(#^^^###)^^(#^9)100 $$f_{\varphi(9,\varphi(1,2,0)+1)}(100)$$
terridekerated pentacthulcubor E100(#^^^###)^^(#^10)100 $$f_{\varphi(10,\varphi(1,2,0)+1)}(100)$$
territoped pentacthulcubor E100(#^^^###)^^#^#100 $$f_{\varphi(\omega,\varphi(1,2,0)+1)}(100)$$
tethrathothitetrated pentacthulcubor E100(#^^^###)^^#^^#100 $$f_{\varphi(\varepsilon_0,\varphi(1,2,0)+1)}(100)$$
tethracruxitetrated pentacthulcubor E100(#^^^###)^^#^^##100 $$f_{\varphi(\zeta_0,\varphi(1,2,0)+1)}(100)$$
tethracubotetrated pentacthulcubor E100(#^^^###)^^#^^###100 $$f_{\varphi(\eta_0,\varphi(1,2,0)+1)}(100)$$
tethrateronitetrated pentacthulcubor E100(#^^^###)^^#^^####100 $$f_{\varphi(\varphi(4,0),\varphi(1,2,0)+1)}(100)$$
tethrapetonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^5)100 $$f_{\varphi(\varphi(5,0),\varphi(1,2,0)+1)}(100)$$
tethrahexonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^6)100 $$f_{\varphi(\varphi(6,0),\varphi(1,2,0)+1)}(100)$$
tethraheptonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^7)100 $$f_{\varphi(\varphi(7,0),\varphi(1,2,0)+1)}(100)$$
tethra-ogdonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^8)100 $$f_{\varphi(\varphi(8,0),\varphi(1,2,0)+1)}(100)$$
tethrennonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^9)100 $$f_{\varphi(\varphi(9,0),\varphi(1,2,0)+1)}(100)$$
tethradekonitetrated pentacthulcubor E100(#^^^###)^^(#^^#^10)100 $$f_{\varphi(\varphi(10,0),\varphi(1,2,0)+1)}(100)$$
tethratopotetrated pentacthulcubor E100(#^^^###)^^#^^#^#100 $$f_{\varphi(\varphi(\omega,0),\varphi(1,2,0)+1)}(100)$$
tethrarxitritetrated pentacthulcubor E100(#^^^###)^^#^^#^^#100 $$f_{\varphi(\varphi(\varepsilon_0,0),\varphi(1,2,0)+1)}(100)$$
pentacthulcubotetrated pentacthulcubor E100(#^^^###)^^(#^^^###)100 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[1]}(100)$$
dupentated pentacthulcubor E100(#^^^###)^^(#^^^###)100 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[1]}(100)$$
tripentated pentacthulcubor E100(#^^^###)^^(#^^^###)^^(#^^^###)100 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[2]}(100)$$

= E100(#^^^###)^^^#4

$$f_{\varphi(1,0,\varphi(1,2,0)+1)[3]}(100)$$
quinquapentated pentacthulcubor E100(#^^^###)^^^#5 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[4]}(100)$$
sexapentated pentacthulcubor E100(#^^^###)^^^#6 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[5]}(100)$$
septapentated pentacthulcubor E100(#^^^###)^^^#7 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[6]}(100)$$
octapentated pentacthulcubor E100(#^^^###)^^^#8 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[7]}(100)$$
nonapentated pentacthulcubor E100(#^^^###)^^^#9 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[8]}(100)$$
decapentated pentacthulcubor E100(#^^^###)^^^#10 $$f_{\varphi(1,0,\varphi(1,2,0)+1)[9]}(100)$$
horrible pentacthulcubor E100(#^^^###)^^^#100 $$f_{\varphi(1,0,\varphi(1,2,0)+1)}(100)$$
horrible horrible pentacthulcubor E100((#^^^###)^^^#)^^^#100 $$f_{\varphi(1,0,\varphi(1,2,0)+2)}(100)$$
three-ex-horrible pentacthulcubor E100(((#^^^###)^^^#)^^^#)^^^#100 $$f_{\varphi(1,0,\varphi(1,2,0)+3)}(100)$$
four-ex-horrible pentacthulcubor E100((((#^^^###)^^^#)^^^#)^^^#)^^^#100

= E100(#^^^###)^^^#>(4)100

$$f_{\varphi(1,0,\varphi(1,2,0)+4)}(100)$$
five-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(5)100 $$f_{\varphi(1,0,\varphi(1,2,0)+5)}(100)$$
six-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(6)100 $$f_{\varphi(1,0,\varphi(1,2,0)+6)}(100)$$
seven-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(7)100 $$f_{\varphi(1,0,\varphi(1,2,0)+7)}(100)$$
eight-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(8)100 $$f_{\varphi(1,0,\varphi(1,2,0)+8)}(100)$$
nine-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(9)100 $$f_{\varphi(1,0,\varphi(1,2,0)+9)}(100)$$
ten-ex-horrible pentacthulcubor E100(#^^^###)^^^#>(10)100 $$f_{\varphi(1,0,\varphi(1,2,0)+10)}(100)$$
horriterated pentacthulcubor E100(#^^^###)^^^#>#100 $$f_{\varphi(1,0,\varphi(1,2,0)+\omega)}(100)$$
dustaculated horripentacthulcubor E100(#^^^###)^^^#>(#^^^###)^^^#100 $$f_{\varphi(1,0,\varphi(1,0,\varphi(1,2,0)+1))}(100)$$
tristaculated horripentacthulcubor E100(#^^^###)^^^#>(#^^^###)^^^#>(#^^^###)^^^#100 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[3]}(100)$$
tetrastaculated horripentacthulcubor E100(#^^^###)^^^##4 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[4]}(100)$$
pentastaculated horripentacthulcubor E100(#^^^###)^^^##5 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[5]}(100)$$
hexastaculated horripentacthulcubor E100(#^^^###)^^^##6 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[6]}(100)$$
heptastaculated horripentacthulcubor E100(#^^^###)^^^##7 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[7]}(100)$$
ogdastaculated horripentacthulcubor E100(#^^^###)^^^##8 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[8]}(100)$$
ennastaculated horripentacthulcubor E100(#^^^###)^^^##9 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[9]}(100)$$
dekastaculated horripentacthulcubor E100(#^^^###)^^^##10 $$f_{\varphi(1,1,\varphi(1,2,0)+1)[10]}(100)$$
horrisquared pentacthulcubor E100(#^^^###)^^^##100 $$f_{\varphi(1,1,\varphi(1,2,0)+1)}(100)$$
horritersquared pentacthulcubor E100(#^^^###)^^^##>#100 $$f_{\varphi(1,1,\varphi(1,2,0)+\omega)}(100)$$
dustaculated horrisquared pentacthulcubor E100(#^^^###)^^^##>(#^^^###)^^^##100 $$f_{\varphi(1,1,\varphi(1,1,\varphi(1,2,0)+1))}(100)$$
tristaculated horrisquared pentacthulcubor E100(#^^^###)^^^###3 $$f_{\varphi(1,1,\varphi(1,1,\varphi(1,2,0)+1))}(100)$$
tetrastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###4 $$f_{\varphi(1,2,1)[3]}(100)$$
pentastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###5 $$f_{\varphi(1,2,1)[4]}(100)$$
hexastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###6 $$f_{\varphi(1,2,1)[5]}(100)$$
heptastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###7 $$f_{\varphi(1,2,1)[6]}(100)$$
ogdastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###8 $$f_{\varphi(1,2,1)[7]}(100)$$
ennastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###9 $$f_{\varphi(1,2,1)[8]}(100)$$
dekastaculated horrisquared pentacthulcubor E100(#^^^###)^^^###10 $$f_{\varphi(1,2,1)[9]}(100)$$
pentacthulducubor E100(#^^^###)^^^###100 $$f_{\varphi(1,2,1)}(100)$$
pentacthultricubor E100((#^^^###)^^^###)^^^###100 $$f_{\varphi(1,2,2)}(100)$$
pentacthultetracubor E100(((#^^^###)^^^###)^^^###)^^^###100 $$f_{\varphi(1,2,3)}(100)$$
pentacthulpentacubor E100#^^^###>#5 $$f_{\varphi(1,2,4)}(100)$$
pentacthulhexacubor E100#^^^###>#6 $$f_{\varphi(1,2,5)}(100)$$
pentacthulheptacubor E100#^^^###>#7 $$f_{\varphi(1,2,6)}(100)$$
pentacthuloctacubor E100#^^^###>#8 $$f_{\varphi(1,2,7)}(100)$$
pentacthulennacubor E100#^^^###>#9 $$f_{\varphi(1,2,8)}(100)$$
pentacthuldekacubor E100#^^^###>#10 $$f_{\varphi(1,2,9)}(100)$$
pentacthulendekacubor E100#^^^###>#11 $$f_{\varphi(1,2,10)}(100)$$
pentacthuldodekacubor E100#^^^###>#12 $$f_{\varphi(1,2,11)}(100)$$
pentacthul-icosacubor E100#^^^###>#20 $$f_{\varphi(1,2,19)}(100)$$
pentacthulitercubor E100#^^^###>#100 $$f_{\varphi(1,2,\omega)}(100)$$
dustaculated pentacthulcubor E100#^^^###>#^^^###100 $$f_{\varphi(1,2,\varphi(1,2,0))}(100)$$
tristaculated pentacthulcubor E100#^^^###>#^^^###>#^^^###100 $$f_{\varphi(1,3,0)[3]}(100)$$
tetrastaculated pentacthulcubor E100#^^^###>#^^^###>#^^^###>#^^^###100

= E100#^^^####4

$$f_{\varphi(1,3,0)[4]}(100)$$
pentastaculated pentacthulcubor E100#^^^####5 $$f_{\varphi(1,3,0)[5]}(100)$$
hexastaculated pentacthulcubor E100#^^^####6 $$f_{\varphi(1,3,0)[6]}(100)$$
heptastaculated pentacthulcubor E100#^^^####7 $$f_{\varphi(1,3,0)[7]}(100)$$
ogdastaculated pentacthulcubor E100#^^^####8 $$f_{\varphi(1,3,0)[8]}(100)$$
ennastaculated pentacthulcubor E100#^^^####9 $$f_{\varphi(1,3,0)[9]}(100)$$
dekastaculated pentacthulcubor E100#^^^####10 $$f_{\varphi(1,3,0)[10]}(100)$$
icosastaculated pentacthulcubor E100#^^^####20 $$f_{\varphi(1,3,0)[20]}(100)$$
triantastaculated pentacthulcubor E100#^^^####30 $$f_{\varphi(1,3,0)[30]}(100)$$
sarantastaculated pentacthulcubor E100#^^^####40 $$f_{\varphi(1,3,0)[40]}(100)$$
penintastaculated pentacthulcubor E100#^^^####50 $$f_{\varphi(1,3,0)[50]}(100)$$
exintastaculated pentacthulcubor E100#^^^####60 $$f_{\varphi(1,3,0)[60]}(100)$$
ebdomintastaculated pentacthulcubor E100#^^^####70 $$f_{\varphi(1,3,0)[70]}(100)$$
ogdontastaculated pentacthulcubor E100#^^^####80 $$f_{\varphi(1,3,0)[80]}(100)$$
enenintastaculated pentacthulcubor E100#^^^####90 $$f_{\varphi(1,3,0)[90]}(100)$$

## Sources

Community content is available under CC-BY-SA unless otherwise noted.