11,328
pages

The pentacthul-ogdon regiment is a series of numbers from E100#^^^(#^8)100 to E100(#^^^#^9)90 defined using Extended Cascading-E Notation (i.e. beginning frompentacthul-ogdon and up to enenintastaculated pentacthul-odgon).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Pentacthulhepton regiment Pentacthulennon regiment

## List of numbers of the regiment

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation)
pentacthul-ogdon E100#^^^(#^8)100 $$f_{\varphi(1,7,0)}(100)$$
grand pentacthul-ogdon E100#^^^(#^8)100#2 $$f_{\varphi(1,7,0)}^2(100)$$
grangol-carta-pentacthul-ogdon E100#^^^(#^8)100#100 $$f_{\varphi(1,7,0)+1}(100)$$
godgahlah-carta-pentacthul-ogdon E100#^^^(#^8)100#^#100 $$f_{\varphi(1,7,0)+\omega^\omega}(100)$$
tethrathoth-carta-pentacthul-ogdon E100#^^^(#^8)100#^^#100 $$f_{\varphi(1,7,0)+\varepsilon_0}(100)$$
pentacthulhum-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^#100 $$f_{\varphi(1,7,0)+\Gamma_0}(100)$$
pentacthulcross-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^##100 $$f_{\varphi(1,7,0)+\varphi(1,1,0)}(100)$$
pentacthulcubor-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^###100 $$f_{\varphi(1,7,0)+\varphi(1,2,0)}(100)$$
pentacthulteron-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^####100 $$f_{\varphi(1,7,0)+\varphi(1,3,0)}(100)$$
pentacthulpeton-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^5)100 $$f_{\varphi(1,7,0)+\varphi(1,4,0)}(100)$$
pentacthulhexon-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^6)100 $$f_{\varphi(1,7,0)+\varphi(1,5,0)}(100)$$
pentacthulhepton-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^7)100 $$f_{\varphi(1,7,0)+\varphi(1,6,0)}(100)$$
pentacthul-ogdon-by-deuteron, pentacthul-ogdon-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^8)100 $$f_{\varphi(1,7,0)2}(100)$$
pentacthul-ogdon-by-triton E100#^^^(#^8)*#4 $$f_{\varphi(1,7,0)3}(100)$$
pentacthul-ogdon-by-teterton E100#^^^(#^8)*#5 $$f_{\varphi(1,7,0)4}(100)$$
pentacthul-ogdon-by-pepton E100#^^^(#^8)*#6 $$f_{\varphi(1,7,0)5}(100)$$
pentacthul-ogdon-by-exton E100#^^^(#^8)*#7 $$f_{\varphi(1,7,0)6}(100)$$
pentacthul-ogdon-by-epton E100#^^^(#^8)*#8 $$f_{\varphi(1,7,0)7}(100)$$
pentacthul-ogdon-by-ogdon E100#^^^(#^8)*#9 $$f_{\varphi(1,7,0)8}(100)$$
pentacthul-ogdon-by-enton E100#^^^(#^8)*#10 $$f_{\varphi(1,7,0)9}(100)$$
pentacthul-ogdon-by-dekaton E100#^^^(#^8)*#11 $$f_{\varphi(1,7,0)10}(100)$$
pentacthul-ogdon-by-hyperion E100#^^^(#^8)*#100 $$f_{\varphi(1,7,0)\omega}(100)$$
pentacthul-ogdon-by-godgahlah E100#^^^(#^8)*#^#100 $$f_{\varphi(1,7,0)\omega^\omega}(100)$$
pentacthul-ogdon-by-gridgahlah E100#^^^(#^8)*#^##100 $$f_{\varphi(1,7,0)\omega^{\omega^2}}(100)$$
pentacthul-ogdon-by-kubikahlah E100#^^^(#^8)*#^###100 $$f_{\varphi(1,7,0)\omega^{\omega^3}}(100)$$
pentacthul-ogdon-by-quarticahlah E100#^^^(#^8)*#^(#^4)100 $$f_{\varphi(1,7,0)\omega^{\omega^4}}(100)$$
pentacthul-ogdon-by-tethrathoth E100#^^^(#^8)*#^^#100 $$f_{\varphi(1,7,0)\varepsilon_0}(100)$$
pentacthul-ogdon-by-tethracross E100#^^^(#^8)*#^^##100 $$f_{\varphi(1,7,0)\zeta_0}(100)$$
pentacthul-ogdon-by-tethracubor E100#^^^(#^8)*#^^###100 $$f_{\varphi(1,7,0)\eta_0}(100)$$
pentacthul-ogdon-by-tethrateron E100#^^^(#^8)*#^^####100 $$f_{\varphi(1,7,0)\varphi(4,0)}(100)$$
pentacthul-ogdon-by-pentacthulhum E100#^^^(#^8)*#^^^#100 $$f_{\varphi(1,7,0)\Gamma_0}(100)$$
pentacthul-ogdon-by-pentacthulcross E100#^^^(#^8)*#^^^##100 $$f_{\varphi(1,7,0)\varphi(1,1,0)}(100)$$
pentacthul-ogdon-by-pentacthulcubor E100#^^^(#^8)*#^^^###100 $$f_{\varphi(1,7,0)\varphi(1,2,0)}(100)$$
pentacthul-ogdon-by-pentacthulteron E100#^^^(#^8)*#^^^####100 $$f_{\varphi(1,7,0)\varphi(1,3,0)}(100)$$
pentacthul-ogdon-by-pentacthulpeton E100#^^^(#^8)*#^^^(#^5)100 $$f_{\varphi(1,7,0)\varphi(1,4,0)}(100)$$
pentacthul-ogdon-by-pentacthulhexon E100#^^^(#^8)*#^^^(#^6)100 $$f_{\varphi(1,7,0)\varphi(1,5,0)}(100)$$
pentacthul-ogdon-by-pentacthulhepton E100#^^^(#^8)*#^^^(#^7)100 $$f_{\varphi(1,7,0)\varphi(1,6,0)}(100)$$
deutero-pentacthul-ogdon, pentacthul-ogdon-by-pentacthul-ogdon E100#^^^(#^8)*#^^^(#^8)100 $$f_{\varphi(1,7,0)^2}(100)$$
trito-pentacthul-ogdon E100#^^^(#^8)*#^^^(#^8)*#^^^(#^8)100 $$f_{\varphi(1,7,0)^3}(100)$$
teterto-pentacthul-ogdon E100(#^^^#^8)^#4 $$f_{\varphi(1,7,0)^4}(100)$$
pepto-pentacthul-ogdon E100(#^^^#^8)^#5 $$f_{\varphi(1,7,0)^5}(100)$$
exto-pentacthul-ogdon E100(#^^^#^8)^#6 $$f_{\varphi(1,7,0)^6}(100)$$
epto-pentacthul-ogdon E100(#^^^#^8)^#7 $$f_{\varphi(1,7,0)^7}(100)$$
ogdo-pentacthul-ogdon E100(#^^^#^8)^#8 $$f_{\varphi(1,7,0)^8}(100)$$
ento-pentacthul-ogdon E100(#^^^#^8)^#9 $$f_{\varphi(1,7,0)^9}(100)$$
dekato-pentacthul-ogdon E100(#^^^#^8)^#10 $$f_{\varphi(1,7,0)^{10}}(100)$$
pentacthul-ogdonifact E100(#^^^#^8)^#100 $$f_{\varphi(1,7,0)^{\omega}}(100)$$
quadratapentacthul-ogdon E100(#^^^#^8)^##100 $$f_{\varphi(1,7,0)^{\omega^2}}(100)$$
kubikupentacthul-ogdon E100(#^^^#^8)^###100 $$f_{\varphi(1,7,0)^{\omega^3}}(100)$$
quarticupentacthul-ogdon E100(#^^^#^8)^####100 $$f_{\varphi(1,7,0)^{\omega^4}}(100)$$
quinticupentacthul-ogdon E100(#^^^#^8)^(#^6)100 $$f_{\varphi(1,7,0)^{\omega^5}}(100)$$
sexticupentacthul-ogdon E100(#^^^#^8)^(#^8)100 $$f_{\varphi(1,7,0)^{\omega^6}}(100)$$
septicupentacthul-ogdon E100(#^^^#^8)^(#^8)100 $$f_{\varphi(1,7,0)^{\omega^7}}(100)$$
octicupentacthul-ogdon E100(#^^^#^8)^(#^9)100 $$f_{\varphi(1,7,0)^{\omega^8}}(100)$$
nonicupentacthul-ogdon E100(#^^^#^8)^(#^9)100 $$f_{\varphi(1,7,0)^{\omega^9}}(100)$$
decicupentacthul-ogdon E100(#^^^#^8)^(#^10)100 $$f_{\varphi(1,7,0)^{\omega^{10}}}(100)$$
pentacthul-ogdon-ipso-godgahlah E100(#^^^#^8)^#^#100 $$f_{\varphi(1,7,0)^{\omega^\omega}}(100)$$
pentacthul-ogdon-ipso-tethrathoth E100(#^^^#^8)^#^^#100 $$f_{\varphi(1,7,0)^{\varepsilon_0}}(100)$$
pentacthul-ogdon-ipso-pentacthulhum E100(#^^^#^8)^#^^^#100 $$f_{\varphi(1,7,0)^{\Gamma_0}}(100)$$
pentacthul-ogdon-ipso-pentacthulcross E100(#^^^#^8)^#^^^##100 $$f_{\varphi(1,7,0)^{\varphi(1,1,0)}}(100)$$
pentacthul-ogdon-ipso-pentacthulcubor E100(#^^^#^8)^#^^^###100 $$f_{\varphi(1,7,0)^{\varphi(1,2,0)}}(100)$$
pentacthul-ogdon-ipso-pentacthulteron E100(#^^^#^8)^#^^^####100 $$f_{\varphi(1,7,0)^{\varphi(1,3,0)}}(100)$$
pentacthul-ogdon-ipso-pentacthulpeton E100(#^^^#^8)^(#^^^#^5)100 $$f_{\varphi(1,7,0)^{\varphi(1,4,0)}}(100)$$
pentacthul-ogdon-ipso-pentacthulhexon E100(#^^^#^8)^(#^^^#^6)100 $$f_{\varphi(1,7,0)^{\varphi(1,5,0)}}(100)$$
pentacthul-ogdon-ipso-pentacthulhepton E100(#^^^#^8)^(#^^^#^7)100 $$f_{\varphi(1,7,0)^{\varphi(1,6,0)}}(100)$$
dutetrated pentacthul-ogdon, pentacthul-ogdon-ipso-pentacthul-ogdon E100(#^^^#^8)^(#^^^#^8)100 $$f_{\varphi(1,7,0)^{\varphi(1,7,0)}}(100)$$
tritetrated pentacthul-ogdon E100(#^^^#^8)^(#^^^#^8)^(#^^^#^8)100 $$f_{\varphi(1,7,0)^{\varphi(1,7,0)^{\varphi(1,7,0)}}}(100)$$
quadratetrated pentacthul-ogdon E100(#^^^#^8)^^#4 $$f_{\varphi(1,7,0)\uparrow\uparrow4}(100)$$
quinquatetrated pentacthul-ogdon E100(#^^^#^8)^^#5 $$f_{\varphi(1,7,0)\uparrow\uparrow5}(100)$$
sexatetrated pentacthul-ogdon E100(#^^^#^8)^^#6 $$f_{\varphi(1,7,0)\uparrow\uparrow6}(100)$$
septatetrated pentacthul-ogdon E100(#^^^#^8)^^#7 $$f_{\varphi(1,7,0)\uparrow\uparrow7}(100)$$
octatetrated pentacthul-ogdon E100(#^^^#^8)^^#8 $$f_{\varphi(1,7,0)\uparrow\uparrow8}(100)$$
nonatetrated pentacthul-ogdon E100(#^^^#^8)^^#9 $$f_{\varphi(1,7,0)\uparrow\uparrow9}(100)$$
decatetrated pentacthul-ogdon E100(#^^^#^8)^^#10 $$f_{\varphi(1,7,0)\uparrow\uparrow10}(100)$$
terrible pentacthul-ogdon E100(#^^^#^8)^^#100 $$f_{\varepsilon_{\varphi(1,7,0)+1}}(100)$$
terrisquared pentacthul-ogdon E100(#^^^#^8)^^##100 $$f_{\zeta_{\varphi(1,7,0)+1}}(100)$$
terricubed pentacthul-ogdon E100(#^^^#^8)^^###100 $$f_{\eta_{\varphi(1,7,0)+1}}(100)$$
territesserated pentacthul-ogdon E100(#^^^#^8)^^####100 $$f_{\varphi(4,\varphi(1,7,0)+1)}(100)$$
territoped pentacthul-ogdon E100(#^^^#^8)^^#^#100 $$f_{\varphi(\omega,\varphi(1,7,0)+1)}(100)$$
tethrathothitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^#100 $$f_{\varphi(\varepsilon_0,\varphi(1,7,0)+1)}(100)$$
pentacthultetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^#100 $$f_{\varphi(\Gamma_0,\varphi(1,7,0)+1)}(100)$$
pentacthulcruxitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^##100 $$f_{\varphi(\varphi(1,1,0),\varphi(1,7,0)+1)}(100)$$
pentacthulcubotetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^###100 $$f_{\varphi(\varphi(1,2,0),\varphi(1,7,0)+1)}(100)$$
pentacthulteronitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^####100 $$f_{\varphi(\varphi(1,3,0),\varphi(1,7,0)+1)}(100)$$
pentacthulpetonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^5)100 $$f_{\varphi(\varphi(1,4,0),\varphi(1,7,0)+1)}(100)$$
pentacthulhexonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^6)100 $$f_{\varphi(\varphi(1,5,0),\varphi(1,7,0)+1)}(100)$$
pentacthulheptonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^7)100 $$f_{\varphi(\varphi(1,6,0),\varphi(1,7,0)+1)}(100)$$
dupentated pentacthul-ogdon, pentacthul-ogdonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^8)100 $$f_{\varphi(\varphi(1,7,0),1)}(100)$$
tripentated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^8)^^(#^^^#^8)100 $$f_{\varphi(\varphi(\varphi(1,7,0),1),0)}(100)$$
quadrapentated pentacthul-ogdon E100(#^^^#^8)^^^#4 $$f_{\Gamma_{\varphi(1,7,0)+1}[4]}(100)$$
quinquapentated pentacthul-ogdon E100(#^^^#^8)^^^#5 $$f_{\Gamma_{\varphi(1,7,0)+1}[5]}(100)$$
sexapentated pentacthul-ogdon E100(#^^^#^8)^^^#6 $$f_{\Gamma_{\varphi(1,7,0)+1}[6]}(100)$$
septapentated pentacthul-ogdon E100(#^^^#^8)^^^#7 $$f_{\Gamma_{\varphi(1,7,0)+1}[7]}(100)$$
octapentated pentacthul-ogdon E100(#^^^#^8)^^^#8 $$f_{\Gamma_{\varphi(1,7,0)+1}[8]}(100)$$
nonapentated pentacthul-ogdon E100(#^^^#^8)^^^#9 $$f_{\Gamma_{\varphi(1,7,0)+1}[9]}(100)$$
decapentated pentacthul-ogdon E100(#^^^#^8)^^^#10 $$f_{\Gamma_{\varphi(1,7,0)+1}[10]}(100)$$
horrible pentacthul-ogdon E100(#^^^#^8)^^^#100 $$f_{\Gamma_{\varphi(1,7,0)+1}}(100)$$
horriterated pentacthul-ogdon E100(#^^^#^8)^^^#>#100 $$f_{\Gamma_{\varphi(1,7,0)+\omega}}(100)$$
godgahlah-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^#100 $$f_{\Gamma_{\varphi(1,7,0)+\omega^\omega}}(100)$$
tethrathoth-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^#100 $$f_{\Gamma_{\varphi(1,7,0)+\varepsilon_0}}(100)$$
pentacthulhum-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^#100 $$f_{\Gamma_{\varphi(1,7,0)+\Gamma_0}}(100)$$
pentacthulcross-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^##100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,1,0)}}(100)$$
pentacthulcubor-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^###100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,2,0)}}(100)$$
pentacthulteron-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^####100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,3,0)}}(100)$$
pentacthulpeton-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^5)100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,4,0)}}(100)$$
pentacthulhexon-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^6)100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,5,0)}}(100)$$
pentacthulhepton-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^7)100 $$f_{\Gamma_{\varphi(1,7,0)+\varphi(1,6,0)}}(100)$$
pentacthul-ogdon-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)100 $$f_{\Gamma_{\varphi(1,7,0)2}}(100)$$
dustaculated horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)^^^#100 $$f_{\Gamma_{\Gamma_{\varphi(1,7,0)+1}}}(100)$$
tristaculated horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)^^^#>(#^^^#^8)^^^#100 $$f_{\Gamma_{\Gamma_{\Gamma_{\varphi(1,7,0)+1}}}}(100)$$
tetrastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##4 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[4]}(100)$$
pentastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##5 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[5]}(100)$$
hexastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##6 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[6]}(100)$$
heptastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##7 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[7]}(100)$$
ogdastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##8 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[8]}(100)$$
ennastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##9 $$f_{\varphi(1,1,\varphi(1,7,0)+1)[9]}(100)$$
dekastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##1- $$f_{\varphi(1,1,\varphi(1,7,0)+1)[10]}(100)$$
horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##100 $$f_{\varphi(1,1,\varphi(1,7,0)+1)}(100)$$
horritersquared pentacthul-ogdon E100(#^^^#^8)^^^##>#100 $$f_{\varphi(1,1,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^#100 $$f_{\varphi(1,1,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^#100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^#100 $$f_{\varphi(1,1,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^##100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^###100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^####100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^5)100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^6)100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^7)100 $$f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,6,0))}(100)$$
pentacthul-ogdon-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^8)100 $$f_{\varphi(1,1,\varphi(1,7,0)2)}(100)$$
dustaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^8)^^^##100 $$f_{\varphi(1,1,\varphi(1,1,\varphi(1,7,0)+1))}(100)$$
tristaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###3 $$f_{\varphi(1,1,\varphi(1,1,\varphi(1,1,\varphi(1,7,0)+1)))}(100)$$
tetrastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###4 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[4]}(100)$$
pentastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###5 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[5]}(100)$$
hexastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###6 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[6]}(100)$$
heptastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###7 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[7]}(100)$$
ogdastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###8 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[8]}(100)$$
ennastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###9 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[9]}(100)$$
dekastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###10 $$f_{\varphi(1,2,\varphi(1,7,0)+1)[10]}(100)$$
horricubed pentacthul-ogdon E100(#^^^#^8)^^^###100 $$f_{\varphi(1,2,\varphi(1,7,0)+1)}(100)$$
horritercubed pentacthul-ogdon E100(#^^^#^8)^^^###>#100 $$f_{\varphi(1,2,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^#100 $$f_{\varphi(1,2,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^#100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^#100 $$f_{\varphi(1,2,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^##100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^###100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^####100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^5)100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^6)100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^7)100 $$f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,6,0))}(100)$$
pentacthul-ogdon-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>(#^^^#^8)100 $$f_{\varphi(1,2,\varphi(1,7,0)2)}(100)$$
dustaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>(#^^^#^8)^^^###100 $$f_{\varphi(1,2,\varphi(1,2,\varphi(1,7,0)+1))}(100)$$
tristaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####3 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[3]}(100)$$
tetrastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####4 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[4]}(100)$$
pentastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####5 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[5]}(100)$$
hexastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####6 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[6]}(100)$$
heptastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####7 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[7]}(100)$$
ogdastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####8 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[8]}(100)$$
ennastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####9 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[9]}(100)$$
dekastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####10 $$f_{\varphi(1,3,\varphi(1,7,0)+1)[10]}(100)$$
horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####100 $$f_{\varphi(1,3,\varphi(1,7,0)+1)}(100)$$
horritertesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#100 $$f_{\varphi(1,3,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^#100 $$f_{\varphi(1,3,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^#100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^#100 $$f_{\varphi(1,3,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^##100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^###100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>#^^^####100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^5)100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^6)100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^7)100 $$f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,6,0))}(100)$$
pentacthul-ogdon-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^8)100 $$f_{\varphi(1,3,\varphi(1,7,0)2)}(100)$$
dustaculated horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^8)^^^####100 $$f_{\varphi(1,3,\varphi(1,3,\varphi(1,7,0)+1))}(100)$$
tristaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^5)3 $$f_{\varphi(1,3,\varphi(1,3,\varphi(1,3,\varphi(1,7,0)+1)))}(100)$$
tetrastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^5)4 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[4]}(100)$$
pentastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)5 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[5]}(100)$$
hexastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)6 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[6]}(100)$$
heptastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)7 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[7]}(100)$$
ogdastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)8 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[8]}(100)$$
ennastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)9 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[9]}(100)$$
dekastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)10 $$f_{\varphi(1,4,\varphi(1,7,0)+1)[10]}(100)$$
horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^5)100 $$f_{\varphi(1,4,\varphi(1,7,0)+1)}(100)$$
horriterpenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#100 $$f_{\varphi(1,4,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^#100 $$f_{\varphi(1,4,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^#100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^#100 $$f_{\varphi(1,4,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^##100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^###100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^####100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^5)100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^6)100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^7)100 $$f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,6,0))}(100)$$
pentacthul-ogdon-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^8)100 $$f_{\varphi(1,4,\varphi(1,7,0)2)}(100)$$
dustaculated horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^8)^^^(#^5)100 $$f_{\varphi(1,4,\varphi(1,4,\varphi(1,7,0)+1))}(100)$$
tristaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)3 $$f_{\varphi(1,4,\varphi(1,4,\varphi(1,4,\varphi(1,7,0)+1)+1))}(100)$$
tetrastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)4 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[4]}(100)$$
pentastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)5 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[5]}(100)$$
hexastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)6 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[6]}(100)$$
heptastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)7 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[7]}(100)$$
ogdastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)8 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[8]}(100)$$
ennastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)9 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[9]}(100)$$
dekastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)10 $$f_{\varphi(1,5,\varphi(1,7,0)+1)[10]}(100)$$
horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^6)100 $$f_{\varphi(1,5,\varphi(1,7,0)+1)}(100)$$
horriterhexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^##100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^###100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^####100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^5)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^6)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^7)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthul-ogdon-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^8)100 $$f_{\varphi(1,5,\varphi(1,7,0)2)}(100)$$
dustaculated horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^8)^^^(#^6)100 $$f_{\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1))}(100)$$
tristaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)3 $$f_{\varphi(1,5,\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1)+1))}(100)$$
tetrastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)4 $$f_{\varphi(1,7,1)[4]}(100)$$
pentastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)5 $$f_{\varphi(1,7,1)[5]}(100)$$
hexastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)6 $$f_{\varphi(1,7,1)[6]}(100)$$
heptastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)7 $$f_{\varphi(1,7,1)[7]}(100)$$
ogdastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)8 $$f_{\varphi(1,7,1)[8]}(100)$$
ennastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)9 $$f_{\varphi(1,7,1)[9]}(100)$$
dekastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)10 $$f_{\varphi(1,7,1)[10]}(100)$$
horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^7)100 $$f_{\varphi(1,5,\varphi(1,7,0)+1)}(100)$$
horriterhepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\omega)}(100)$$
godgahlah-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\omega^\omega)}(100)$$
tethrathoth-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varepsilon_0)}(100)$$
pentacthulhum-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^#100 $$f_{\varphi(1,5,\varphi(1,7,0)+\Gamma_0)}(100)$$
pentacthulcross-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^##100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,1,0))}(100)$$
pentacthulcubor-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^###100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,2,0))}(100)$$
pentacthulteron-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^####100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,3,0))}(100)$$
pentacthulpeton-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^5)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,4,0))}(100)$$
pentacthulhexon-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^6)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthulhepton-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^7)100 $$f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)$$
pentacthul-ogdon-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^8)100 $$f_{\varphi(1,5,\varphi(1,7,0)2)}(100)$$
dustaculated horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^8)^^^(#^7)100 $$f_{\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1))}(100)$$
tristaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)3 $$f_{\varphi(1,5,\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1)+1))}(100)$$
tetrastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)4 $$f_{\varphi(1,7,1)[4]}(100)$$
pentastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)5 $$f_{\varphi(1,7,1)[5]}(100)$$
hexastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)6 $$f_{\varphi(1,7,1)[6]}(100)$$
heptastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)7 $$f_{\varphi(1,7,1)[7]}(100)$$
ogdastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)8 $$f_{\varphi(1,7,1)[8]}(100)$$
ennastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)9 $$f_{\varphi(1,7,1)[9]}(100)$$
dekastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)10 $$f_{\varphi(1,7,1)[10]}(100)$$
pentacthuldu-ogdon E100((#^^^#^8)^^^#^8)100 $$f_{\varphi(1,7,1)}(100)$$
pentacthultri-ogdon E100(((#^^^#^8)^^^#^8)^^^#^8)100 $$f_{\varphi(1,7,2)}(100)$$
pentacthultetra-ogdon E100#^^^(#^8)>#4 $$f_{\varphi(1,7,3)}(100)$$
pentacthulpenta-ogdon E100#^^^(#^8)>#5 $$f_{\varphi(1,7,4)}(100)$$
pentacthulhexa-ogdon E100#^^^(#^8)>#6 $$f_{\varphi(1,7,5)}(100)$$
pentacthulhepta-ogdon E100#^^^(#^8)>#7 $$f_{\varphi(1,7,6)}(100)$$
pentacthulocta-ogdon E100#^^^(#^8)>#8 $$f_{\varphi(1,7,7)}(100)$$
pentacthulenna-ogdon E100#^^^(#^8)>#9 $$f_{\varphi(1,7,8)}(100)$$
pentacthuldeka-ogdon E100#^^^(#^8)>#10 $$f_{\varphi(1,7,9)}(100)$$
pentacthulendeka-ogdon E100#^^^(#^8)>#11 $$f_{\varphi(1,7,10)}(100)$$
pentacthuldodeka-ogdon E100#^^^(#^8)>#12 $$f_{\varphi(1,7,11)}(100)$$
pentacthul-icosa-ogdon E100#^^^(#^8)>#20 $$f_{\varphi(1,7,19)}(100)$$
pentacthuliter-ogdon E100#^^^(#^8)>#100 $$f_{\varphi(1,7,\omega)}(100)$$
dustaculated pentacthul-ogdon E100#^^^(#^8)>#^^^(#^8)100 $$f_{\varphi(1,7,\varphi(1,7,0))}(100)$$
tristaculated pentacthul-ogdon E100#^^^(#^8)>#^^^(#^8)>#^^^(#^8)100 $$f_{\varphi(1,7,\varphi(1,7,\varphi(1,7,0)))}(100)$$
tetrastaculated pentacthul-ogdon E100(#^^^#^9)4 $$f_{\varphi(1,8,0)[4]}(100)$$
pentastaculated pentacthul-ogdon E100(#^^^#^9)5 $$f_{\varphi(1,8,0)[5]}(100)$$
hexastaculated pentacthul-ogdon E100(#^^^#^9)6 $$f_{\varphi(1,8,0)[6]}(100)$$
heptastaculated pentacthul-ogdon E100(#^^^#^9)7 $$f_{\varphi(1,8,0)[7]}(100)$$
ogdastaculated pentacthul-ogdon E100(#^^^#^9)8 $$f_{\varphi(1,8,0)[8]}(100)$$
ennastaculated pentacthul-ogdon E100(#^^^#^9)9 $$f_{\varphi(1,8,0)[9]}(100)$$
dekastaculated pentacthul-ogdon E100(#^^^#^9)10 $$f_{\varphi(1,8,0)[10]}(100)$$
icosastaculated pentacthul-ogdon E100(#^^^#^9)20 $$f_{\varphi(1,8,0)[20]}(100)$$
triantastaculated pentacthul-ogdon E100(#^^^#^9)30 $$f_{\varphi(1,8,0)[30]}(100)$$
sarantastaculated pentacthul-ogdon E100(#^^^#^9)40 $$f_{\varphi(1,8,0)[40]}(100)$$
penintastaculated pentacthul-ogdon E100(#^^^#^9)50 $$f_{\varphi(1,8,0)[50]}(100)$$
exintastaculated pentacthul-ogdon E100(#^^^#^9)60 $$f_{\varphi(1,8,0)[60]}(100)$$
ebdomintastaculated pentacthul-ogdon E100(#^^^#^9)70 $$f_{\varphi(1,8,0)[70]}(100)$$
ogdontastaculated pentacthul-ogdon E100(#^^^#^9)80 $$f_{\varphi(1,8,0)[80]}(100)$$
enenintastaculated pentacthul-ogdon E100(#^^^#^9)90 $$f_{\varphi(1,8,0)[90]}(100)$$