Googology Wiki
Advertisement
Googology Wiki

The pentacthul-ogdon regiment is a series of numbers from E100#^^^(#^8)100 to E100(#^^^#^9)90 defined using Extended Cascading-E Notation (i.e. beginning frompentacthul-ogdon and up to enenintastaculated pentacthul-odgon).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Pentacthulhepton regiment Pentacthulennon regiment

List of numbers of the regiment

Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation)
pentacthul-ogdon E100#^^^(#^8)100 \(f_{\varphi(1,7,0)}(100)\)
grand pentacthul-ogdon E100#^^^(#^8)100#2 \(f_{\varphi(1,7,0)}^2(100)\)
grangol-carta-pentacthul-ogdon E100#^^^(#^8)100#100 \(f_{\varphi(1,7,0)+1}(100)\)
godgahlah-carta-pentacthul-ogdon E100#^^^(#^8)100#^#100 \(f_{\varphi(1,7,0)+\omega^\omega}(100)\)
tethrathoth-carta-pentacthul-ogdon E100#^^^(#^8)100#^^#100 \(f_{\varphi(1,7,0)+\varepsilon_0}(100)\)
pentacthulhum-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^#100 \(f_{\varphi(1,7,0)+\Gamma_0}(100)\)
pentacthulcross-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^##100 \(f_{\varphi(1,7,0)+\varphi(1,1,0)}(100)\)
pentacthulcubor-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^###100 \(f_{\varphi(1,7,0)+\varphi(1,2,0)}(100)\)
pentacthulteron-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^####100 \(f_{\varphi(1,7,0)+\varphi(1,3,0)}(100)\)
pentacthulpeton-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^5)100 \(f_{\varphi(1,7,0)+\varphi(1,4,0)}(100)\)
pentacthulhexon-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^6)100 \(f_{\varphi(1,7,0)+\varphi(1,5,0)}(100)\)
pentacthulhepton-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^7)100 \(f_{\varphi(1,7,0)+\varphi(1,6,0)}(100)\)
pentacthul-ogdon-by-deuteron, pentacthul-ogdon-carta-pentacthul-ogdon E100#^^^(#^8)100#^^^(#^8)100 \(f_{\varphi(1,7,0)2}(100)\)
pentacthul-ogdon-by-triton E100#^^^(#^8)*#4 \(f_{\varphi(1,7,0)3}(100)\)
pentacthul-ogdon-by-teterton E100#^^^(#^8)*#5 \(f_{\varphi(1,7,0)4}(100)\)
pentacthul-ogdon-by-pepton E100#^^^(#^8)*#6 \(f_{\varphi(1,7,0)5}(100)\)
pentacthul-ogdon-by-exton E100#^^^(#^8)*#7 \(f_{\varphi(1,7,0)6}(100)\)
pentacthul-ogdon-by-epton E100#^^^(#^8)*#8 \(f_{\varphi(1,7,0)7}(100)\)
pentacthul-ogdon-by-ogdon E100#^^^(#^8)*#9 \(f_{\varphi(1,7,0)8}(100)\)
pentacthul-ogdon-by-enton E100#^^^(#^8)*#10 \(f_{\varphi(1,7,0)9}(100)\)
pentacthul-ogdon-by-dekaton E100#^^^(#^8)*#11 \(f_{\varphi(1,7,0)10}(100)\)
pentacthul-ogdon-by-hyperion E100#^^^(#^8)*#100 \(f_{\varphi(1,7,0)\omega}(100)\)
pentacthul-ogdon-by-godgahlah E100#^^^(#^8)*#^#100 \(f_{\varphi(1,7,0)\omega^\omega}(100)\)
pentacthul-ogdon-by-gridgahlah E100#^^^(#^8)*#^##100 \(f_{\varphi(1,7,0)\omega^{\omega^2}}(100)\)
pentacthul-ogdon-by-kubikahlah E100#^^^(#^8)*#^###100 \(f_{\varphi(1,7,0)\omega^{\omega^3}}(100)\)
pentacthul-ogdon-by-quarticahlah E100#^^^(#^8)*#^(#^4)100 \(f_{\varphi(1,7,0)\omega^{\omega^4}}(100)\)
pentacthul-ogdon-by-tethrathoth E100#^^^(#^8)*#^^#100 \(f_{\varphi(1,7,0)\varepsilon_0}(100)\)
pentacthul-ogdon-by-tethracross E100#^^^(#^8)*#^^##100 \(f_{\varphi(1,7,0)\zeta_0}(100)\)
pentacthul-ogdon-by-tethracubor E100#^^^(#^8)*#^^###100 \(f_{\varphi(1,7,0)\eta_0}(100)\)
pentacthul-ogdon-by-tethrateron E100#^^^(#^8)*#^^####100 \(f_{\varphi(1,7,0)\varphi(4,0)}(100)\)
pentacthul-ogdon-by-pentacthulhum E100#^^^(#^8)*#^^^#100 \(f_{\varphi(1,7,0)\Gamma_0}(100)\)
pentacthul-ogdon-by-pentacthulcross E100#^^^(#^8)*#^^^##100 \(f_{\varphi(1,7,0)\varphi(1,1,0)}(100)\)
pentacthul-ogdon-by-pentacthulcubor E100#^^^(#^8)*#^^^###100 \(f_{\varphi(1,7,0)\varphi(1,2,0)}(100)\)
pentacthul-ogdon-by-pentacthulteron E100#^^^(#^8)*#^^^####100 \(f_{\varphi(1,7,0)\varphi(1,3,0)}(100)\)
pentacthul-ogdon-by-pentacthulpeton E100#^^^(#^8)*#^^^(#^5)100 \(f_{\varphi(1,7,0)\varphi(1,4,0)}(100)\)
pentacthul-ogdon-by-pentacthulhexon E100#^^^(#^8)*#^^^(#^6)100 \(f_{\varphi(1,7,0)\varphi(1,5,0)}(100)\)
pentacthul-ogdon-by-pentacthulhepton E100#^^^(#^8)*#^^^(#^7)100 \(f_{\varphi(1,7,0)\varphi(1,6,0)}(100)\)
deutero-pentacthul-ogdon, pentacthul-ogdon-by-pentacthul-ogdon E100#^^^(#^8)*#^^^(#^8)100 \(f_{\varphi(1,7,0)^2}(100)\)
trito-pentacthul-ogdon E100#^^^(#^8)*#^^^(#^8)*#^^^(#^8)100 \(f_{\varphi(1,7,0)^3}(100)\)
teterto-pentacthul-ogdon E100(#^^^#^8)^#4 \(f_{\varphi(1,7,0)^4}(100)\)
pepto-pentacthul-ogdon E100(#^^^#^8)^#5 \(f_{\varphi(1,7,0)^5}(100)\)
exto-pentacthul-ogdon E100(#^^^#^8)^#6 \(f_{\varphi(1,7,0)^6}(100)\)
epto-pentacthul-ogdon E100(#^^^#^8)^#7 \(f_{\varphi(1,7,0)^7}(100)\)
ogdo-pentacthul-ogdon E100(#^^^#^8)^#8 \(f_{\varphi(1,7,0)^8}(100)\)
ento-pentacthul-ogdon E100(#^^^#^8)^#9 \(f_{\varphi(1,7,0)^9}(100)\)
dekato-pentacthul-ogdon E100(#^^^#^8)^#10 \(f_{\varphi(1,7,0)^{10}}(100)\)
pentacthul-ogdonifact E100(#^^^#^8)^#100 \(f_{\varphi(1,7,0)^{\omega}}(100)\)
quadratapentacthul-ogdon E100(#^^^#^8)^##100 \(f_{\varphi(1,7,0)^{\omega^2}}(100)\)
kubikupentacthul-ogdon E100(#^^^#^8)^###100 \(f_{\varphi(1,7,0)^{\omega^3}}(100)\)
quarticupentacthul-ogdon E100(#^^^#^8)^####100 \(f_{\varphi(1,7,0)^{\omega^4}}(100)\)
quinticupentacthul-ogdon E100(#^^^#^8)^(#^6)100 \(f_{\varphi(1,7,0)^{\omega^5}}(100)\)
sexticupentacthul-ogdon E100(#^^^#^8)^(#^8)100 \(f_{\varphi(1,7,0)^{\omega^6}}(100)\)
septicupentacthul-ogdon E100(#^^^#^8)^(#^8)100 \(f_{\varphi(1,7,0)^{\omega^7}}(100)\)
octicupentacthul-ogdon E100(#^^^#^8)^(#^9)100 \(f_{\varphi(1,7,0)^{\omega^8}}(100)\)
nonicupentacthul-ogdon E100(#^^^#^8)^(#^9)100 \(f_{\varphi(1,7,0)^{\omega^9}}(100)\)
decicupentacthul-ogdon E100(#^^^#^8)^(#^10)100 \(f_{\varphi(1,7,0)^{\omega^{10}}}(100)\)
pentacthul-ogdon-ipso-godgahlah E100(#^^^#^8)^#^#100 \(f_{\varphi(1,7,0)^{\omega^\omega}}(100)\)
pentacthul-ogdon-ipso-tethrathoth E100(#^^^#^8)^#^^#100 \(f_{\varphi(1,7,0)^{\varepsilon_0}}(100)\)
pentacthul-ogdon-ipso-pentacthulhum E100(#^^^#^8)^#^^^#100 \(f_{\varphi(1,7,0)^{\Gamma_0}}(100)\)
pentacthul-ogdon-ipso-pentacthulcross E100(#^^^#^8)^#^^^##100 \(f_{\varphi(1,7,0)^{\varphi(1,1,0)}}(100)\)
pentacthul-ogdon-ipso-pentacthulcubor E100(#^^^#^8)^#^^^###100 \(f_{\varphi(1,7,0)^{\varphi(1,2,0)}}(100)\)
pentacthul-ogdon-ipso-pentacthulteron E100(#^^^#^8)^#^^^####100 \(f_{\varphi(1,7,0)^{\varphi(1,3,0)}}(100)\)
pentacthul-ogdon-ipso-pentacthulpeton E100(#^^^#^8)^(#^^^#^5)100 \(f_{\varphi(1,7,0)^{\varphi(1,4,0)}}(100)\)
pentacthul-ogdon-ipso-pentacthulhexon E100(#^^^#^8)^(#^^^#^6)100 \(f_{\varphi(1,7,0)^{\varphi(1,5,0)}}(100)\)
pentacthul-ogdon-ipso-pentacthulhepton E100(#^^^#^8)^(#^^^#^7)100 \(f_{\varphi(1,7,0)^{\varphi(1,6,0)}}(100)\)
dutetrated pentacthul-ogdon, pentacthul-ogdon-ipso-pentacthul-ogdon E100(#^^^#^8)^(#^^^#^8)100 \(f_{\varphi(1,7,0)^{\varphi(1,7,0)}}(100)\)
tritetrated pentacthul-ogdon E100(#^^^#^8)^(#^^^#^8)^(#^^^#^8)100 \(f_{\varphi(1,7,0)^{\varphi(1,7,0)^{\varphi(1,7,0)}}}(100)\)
quadratetrated pentacthul-ogdon E100(#^^^#^8)^^#4 \(f_{\varphi(1,7,0)\uparrow\uparrow4}(100)\)
quinquatetrated pentacthul-ogdon E100(#^^^#^8)^^#5 \(f_{\varphi(1,7,0)\uparrow\uparrow5}(100)\)
sexatetrated pentacthul-ogdon E100(#^^^#^8)^^#6 \(f_{\varphi(1,7,0)\uparrow\uparrow6}(100)\)
septatetrated pentacthul-ogdon E100(#^^^#^8)^^#7 \(f_{\varphi(1,7,0)\uparrow\uparrow7}(100)\)
octatetrated pentacthul-ogdon E100(#^^^#^8)^^#8 \(f_{\varphi(1,7,0)\uparrow\uparrow8}(100)\)
nonatetrated pentacthul-ogdon E100(#^^^#^8)^^#9 \(f_{\varphi(1,7,0)\uparrow\uparrow9}(100)\)
decatetrated pentacthul-ogdon E100(#^^^#^8)^^#10 \(f_{\varphi(1,7,0)\uparrow\uparrow10}(100)\)
terrible pentacthul-ogdon E100(#^^^#^8)^^#100 \(f_{\varepsilon_{\varphi(1,7,0)+1}}(100)\)
terrisquared pentacthul-ogdon E100(#^^^#^8)^^##100 \(f_{\zeta_{\varphi(1,7,0)+1}}(100)\)
terricubed pentacthul-ogdon E100(#^^^#^8)^^###100 \(f_{\eta_{\varphi(1,7,0)+1}}(100)\)
territesserated pentacthul-ogdon E100(#^^^#^8)^^####100 \(f_{\varphi(4,\varphi(1,7,0)+1)}(100)\)
territoped pentacthul-ogdon E100(#^^^#^8)^^#^#100 \(f_{\varphi(\omega,\varphi(1,7,0)+1)}(100)\)
tethrathothitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^#100 \(f_{\varphi(\varepsilon_0,\varphi(1,7,0)+1)}(100)\)
pentacthultetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^#100 \(f_{\varphi(\Gamma_0,\varphi(1,7,0)+1)}(100)\)
pentacthulcruxitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^##100 \(f_{\varphi(\varphi(1,1,0),\varphi(1,7,0)+1)}(100)\)
pentacthulcubotetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^###100 \(f_{\varphi(\varphi(1,2,0),\varphi(1,7,0)+1)}(100)\)
pentacthulteronitetrated pentacthul-ogdon E100(#^^^#^8)^^#^^^####100 \(f_{\varphi(\varphi(1,3,0),\varphi(1,7,0)+1)}(100)\)
pentacthulpetonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^5)100 \(f_{\varphi(\varphi(1,4,0),\varphi(1,7,0)+1)}(100)\)
pentacthulhexonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^6)100 \(f_{\varphi(\varphi(1,5,0),\varphi(1,7,0)+1)}(100)\)
pentacthulheptonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^7)100 \(f_{\varphi(\varphi(1,6,0),\varphi(1,7,0)+1)}(100)\)
dupentated pentacthul-ogdon, pentacthul-ogdonitetrated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^8)100 \(f_{\varphi(\varphi(1,7,0),1)}(100)\)
tripentated pentacthul-ogdon E100(#^^^#^8)^^(#^^^#^8)^^(#^^^#^8)100 \(f_{\varphi(\varphi(\varphi(1,7,0),1),0)}(100)\)
quadrapentated pentacthul-ogdon E100(#^^^#^8)^^^#4 \(f_{\Gamma_{\varphi(1,7,0)+1}[4]}(100)\)
quinquapentated pentacthul-ogdon E100(#^^^#^8)^^^#5 \(f_{\Gamma_{\varphi(1,7,0)+1}[5]}(100)\)
sexapentated pentacthul-ogdon E100(#^^^#^8)^^^#6 \(f_{\Gamma_{\varphi(1,7,0)+1}[6]}(100)\)
septapentated pentacthul-ogdon E100(#^^^#^8)^^^#7 \(f_{\Gamma_{\varphi(1,7,0)+1}[7]}(100)\)
octapentated pentacthul-ogdon E100(#^^^#^8)^^^#8 \(f_{\Gamma_{\varphi(1,7,0)+1}[8]}(100)\)
nonapentated pentacthul-ogdon E100(#^^^#^8)^^^#9 \(f_{\Gamma_{\varphi(1,7,0)+1}[9]}(100)\)
decapentated pentacthul-ogdon E100(#^^^#^8)^^^#10 \(f_{\Gamma_{\varphi(1,7,0)+1}[10]}(100)\)
horrible pentacthul-ogdon E100(#^^^#^8)^^^#100 \(f_{\Gamma_{\varphi(1,7,0)+1}}(100)\)
horriterated pentacthul-ogdon E100(#^^^#^8)^^^#>#100 \(f_{\Gamma_{\varphi(1,7,0)+\omega}}(100)\)
godgahlah-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^#100 \(f_{\Gamma_{\varphi(1,7,0)+\omega^\omega}}(100)\)
tethrathoth-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^#100 \(f_{\Gamma_{\varphi(1,7,0)+\varepsilon_0}}(100)\)
pentacthulhum-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^#100 \(f_{\Gamma_{\varphi(1,7,0)+\Gamma_0}}(100)\)
pentacthulcross-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^##100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,1,0)}}(100)\)
pentacthulcubor-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^###100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,2,0)}}(100)\)
pentacthulteron-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>#^^^####100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,3,0)}}(100)\)
pentacthulpeton-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^5)100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,4,0)}}(100)\)
pentacthulhexon-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^6)100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,5,0)}}(100)\)
pentacthulhepton-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^7)100 \(f_{\Gamma_{\varphi(1,7,0)+\varphi(1,6,0)}}(100)\)
pentacthul-ogdon-turreted-horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)100 \(f_{\Gamma_{\varphi(1,7,0)2}}(100)\)
dustaculated horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)^^^#100 \(f_{\Gamma_{\Gamma_{\varphi(1,7,0)+1}}}(100)\)
tristaculated horripentacthul-ogdon E100(#^^^#^8)^^^#>(#^^^#^8)^^^#>(#^^^#^8)^^^#100 \(f_{\Gamma_{\Gamma_{\Gamma_{\varphi(1,7,0)+1}}}}(100)\)
tetrastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##4 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[4]}(100)\)
pentastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##5 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[5]}(100)\)
hexastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##6 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[6]}(100)\)
heptastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##7 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[7]}(100)\)
ogdastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##8 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[8]}(100)\)
ennastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##9 \(f_{\varphi(1,1,\varphi(1,7,0)+1)[9]}(100)\)
dekastaculated horripentacthul-ogdon E100(#^^^#^8)^^^##1- \(f_{\varphi(1,1,\varphi(1,7,0)+1)[10]}(100)\)
horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##100 \(f_{\varphi(1,1,\varphi(1,7,0)+1)}(100)\)
horritersquared pentacthul-ogdon E100(#^^^#^8)^^^##>#100 \(f_{\varphi(1,1,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^#100 \(f_{\varphi(1,1,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^#100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^#100 \(f_{\varphi(1,1,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^##100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^###100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>#^^^####100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^5)100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^6)100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^7)100 \(f_{\varphi(1,1,\varphi(1,7,0)+\varphi(1,6,0))}(100)\)
pentacthul-ogdon-turreted-horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^8)100 \(f_{\varphi(1,1,\varphi(1,7,0)2)}(100)\)
dustaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^##>(#^^^#^8)^^^##100 \(f_{\varphi(1,1,\varphi(1,1,\varphi(1,7,0)+1))}(100)\)
tristaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###3 \(f_{\varphi(1,1,\varphi(1,1,\varphi(1,1,\varphi(1,7,0)+1)))}(100)\)
tetrastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###4 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[4]}(100)\)
pentastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###5 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[5]}(100)\)
hexastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###6 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[6]}(100)\)
heptastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###7 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[7]}(100)\)
ogdastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###8 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[8]}(100)\)
ennastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###9 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[9]}(100)\)
dekastaculated horrisquared pentacthul-ogdon E100(#^^^#^8)^^^###10 \(f_{\varphi(1,2,\varphi(1,7,0)+1)[10]}(100)\)
horricubed pentacthul-ogdon E100(#^^^#^8)^^^###100 \(f_{\varphi(1,2,\varphi(1,7,0)+1)}(100)\)
horritercubed pentacthul-ogdon E100(#^^^#^8)^^^###>#100 \(f_{\varphi(1,2,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^#100 \(f_{\varphi(1,2,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^#100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^#100 \(f_{\varphi(1,2,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^##100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>#^^^###100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^####100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^5)100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^6)100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^7)100 \(f_{\varphi(1,2,\varphi(1,7,0)+\varphi(1,6,0))}(100)\)
pentacthul-ogdon-turreted-horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>(#^^^#^8)100 \(f_{\varphi(1,2,\varphi(1,7,0)2)}(100)\)
dustaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^###>(#^^^#^8)^^^###100 \(f_{\varphi(1,2,\varphi(1,2,\varphi(1,7,0)+1))}(100)\)
tristaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####3 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[3]}(100)\)
tetrastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####4 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[4]}(100)\)
pentastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####5 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[5]}(100)\)
hexastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####6 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[6]}(100)\)
heptastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####7 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[7]}(100)\)
ogdastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####8 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[8]}(100)\)
ennastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####9 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[9]}(100)\)
dekastaculated horricubed pentacthul-ogdon E100(#^^^#^8)^^^####10 \(f_{\varphi(1,3,\varphi(1,7,0)+1)[10]}(100)\)
horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####100 \(f_{\varphi(1,3,\varphi(1,7,0)+1)}(100)\)
horritertesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#100 \(f_{\varphi(1,3,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^#100 \(f_{\varphi(1,3,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^#100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^#100 \(f_{\varphi(1,3,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^##100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>#^^^###100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>#^^^####100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^5)100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^6)100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^#####>(#^^^#^7)100 \(f_{\varphi(1,3,\varphi(1,7,0)+\varphi(1,6,0))}(100)\)
pentacthul-ogdon-turreted-horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^8)100 \(f_{\varphi(1,3,\varphi(1,7,0)2)}(100)\)
dustaculated horritesserated pentacthul-ogdon E100(#^^^#^8)^^^####>(#^^^#^8)^^^####100 \(f_{\varphi(1,3,\varphi(1,3,\varphi(1,7,0)+1))}(100)\)
tristaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^5)3 \(f_{\varphi(1,3,\varphi(1,3,\varphi(1,3,\varphi(1,7,0)+1)))}(100)\)
tetrastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^5)4 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[4]}(100)\)
pentastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)5 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[5]}(100)\)
hexastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)6 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[6]}(100)\)
heptastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)7 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[7]}(100)\)
ogdastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)8 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[8]}(100)\)
ennastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)9 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[9]}(100)\)
dekastaculated horritesserated pentacthul-ogdon E100((#^^^#^8)^^^#^6)10 \(f_{\varphi(1,4,\varphi(1,7,0)+1)[10]}(100)\)
horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^5)100 \(f_{\varphi(1,4,\varphi(1,7,0)+1)}(100)\)
horriterpenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#100 \(f_{\varphi(1,4,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^#100 \(f_{\varphi(1,4,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^#100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^#100 \(f_{\varphi(1,4,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^##100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^###100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>#^^^####100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^5)100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^6)100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^7)100 \(f_{\varphi(1,4,\varphi(1,7,0)+\varphi(1,6,0))}(100)\)
pentacthul-ogdon-turreted-horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^8)100 \(f_{\varphi(1,4,\varphi(1,7,0)2)}(100)\)
dustaculated horripenterated pentacthul-ogdon E100(#^^^#^8)^^^(#^5)>(#^^^#^8)^^^(#^5)100 \(f_{\varphi(1,4,\varphi(1,4,\varphi(1,7,0)+1))}(100)\)
tristaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)3 \(f_{\varphi(1,4,\varphi(1,4,\varphi(1,4,\varphi(1,7,0)+1)+1))}(100)\)
tetrastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)4 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[4]}(100)\)
pentastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)5 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[5]}(100)\)
hexastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)6 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[6]}(100)\)
heptastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)7 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[7]}(100)\)
ogdastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)8 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[8]}(100)\)
ennastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)9 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[9]}(100)\)
dekastaculated horripenterated pentacthul-ogdon E100((#^^^#^8)^^^#^6)10 \(f_{\varphi(1,5,\varphi(1,7,0)+1)[10]}(100)\)
horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^6)100 \(f_{\varphi(1,5,\varphi(1,7,0)+1)}(100)\)
horriterhexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^##100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^###100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>#^^^####100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^5)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^6)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^7)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthul-ogdon-turreted-horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^8)100 \(f_{\varphi(1,5,\varphi(1,7,0)2)}(100)\)
dustaculated horrihexerated pentacthul-ogdon E100(#^^^#^8)^^^(#^6)>(#^^^#^8)^^^(#^6)100 \(f_{\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1))}(100)\)
tristaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)3 \(f_{\varphi(1,5,\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1)+1))}(100)\)
tetrastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)4 \(f_{\varphi(1,7,1)[4]}(100)\)
pentastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)5 \(f_{\varphi(1,7,1)[5]}(100)\)
hexastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)6 \(f_{\varphi(1,7,1)[6]}(100)\)
heptastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)7 \(f_{\varphi(1,7,1)[7]}(100)\)
ogdastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)8 \(f_{\varphi(1,7,1)[8]}(100)\)
ennastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)9 \(f_{\varphi(1,7,1)[9]}(100)\)
dekastaculated horrihexerated pentacthul-ogdon E100((#^^^#^8)^^^#^7)10 \(f_{\varphi(1,7,1)[10]}(100)\)
horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^7)100 \(f_{\varphi(1,5,\varphi(1,7,0)+1)}(100)\)
horriterhepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\omega)}(100)\)
godgahlah-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\omega^\omega)}(100)\)
tethrathoth-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varepsilon_0)}(100)\)
pentacthulhum-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^#100 \(f_{\varphi(1,5,\varphi(1,7,0)+\Gamma_0)}(100)\)
pentacthulcross-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^##100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,1,0))}(100)\)
pentacthulcubor-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^###100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,2,0))}(100)\)
pentacthulteron-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>#^^^####100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,3,0))}(100)\)
pentacthulpeton-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^5)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,4,0))}(100)\)
pentacthulhexon-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^6)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthulhepton-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^7)100 \(f_{\varphi(1,5,\varphi(1,7,0)+\varphi(1,5,0))}(100)\)
pentacthul-ogdon-turreted-horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^8)100 \(f_{\varphi(1,5,\varphi(1,7,0)2)}(100)\)
dustaculated horrihepterated pentacthul-ogdon E100(#^^^#^8)^^^(#^7)>(#^^^#^8)^^^(#^7)100 \(f_{\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1))}(100)\)
tristaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)3 \(f_{\varphi(1,5,\varphi(1,5,\varphi(1,5,\varphi(1,7,0)+1)+1))}(100)\)
tetrastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)4 \(f_{\varphi(1,7,1)[4]}(100)\)
pentastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)5 \(f_{\varphi(1,7,1)[5]}(100)\)
hexastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)6 \(f_{\varphi(1,7,1)[6]}(100)\)
heptastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)7 \(f_{\varphi(1,7,1)[7]}(100)\)
ogdastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)8 \(f_{\varphi(1,7,1)[8]}(100)\)
ennastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)9 \(f_{\varphi(1,7,1)[9]}(100)\)
dekastaculated horrihepterated pentacthul-ogdon E100((#^^^#^8)^^^#^8)10 \(f_{\varphi(1,7,1)[10]}(100)\)
pentacthuldu-ogdon E100((#^^^#^8)^^^#^8)100 \(f_{\varphi(1,7,1)}(100)\)
pentacthultri-ogdon E100(((#^^^#^8)^^^#^8)^^^#^8)100 \(f_{\varphi(1,7,2)}(100)\)
pentacthultetra-ogdon E100#^^^(#^8)>#4 \(f_{\varphi(1,7,3)}(100)\)
pentacthulpenta-ogdon E100#^^^(#^8)>#5 \(f_{\varphi(1,7,4)}(100)\)
pentacthulhexa-ogdon E100#^^^(#^8)>#6 \(f_{\varphi(1,7,5)}(100)\)
pentacthulhepta-ogdon E100#^^^(#^8)>#7 \(f_{\varphi(1,7,6)}(100)\)
pentacthulocta-ogdon E100#^^^(#^8)>#8 \(f_{\varphi(1,7,7)}(100)\)
pentacthulenna-ogdon E100#^^^(#^8)>#9 \(f_{\varphi(1,7,8)}(100)\)
pentacthuldeka-ogdon E100#^^^(#^8)>#10 \(f_{\varphi(1,7,9)}(100)\)
pentacthulendeka-ogdon E100#^^^(#^8)>#11 \(f_{\varphi(1,7,10)}(100)\)
pentacthuldodeka-ogdon E100#^^^(#^8)>#12 \(f_{\varphi(1,7,11)}(100)\)
pentacthul-icosa-ogdon E100#^^^(#^8)>#20 \(f_{\varphi(1,7,19)}(100)\)
pentacthuliter-ogdon E100#^^^(#^8)>#100 \(f_{\varphi(1,7,\omega)}(100)\)
dustaculated pentacthul-ogdon E100#^^^(#^8)>#^^^(#^8)100 \(f_{\varphi(1,7,\varphi(1,7,0))}(100)\)
tristaculated pentacthul-ogdon E100#^^^(#^8)>#^^^(#^8)>#^^^(#^8)100 \(f_{\varphi(1,7,\varphi(1,7,\varphi(1,7,0)))}(100)\)
tetrastaculated pentacthul-ogdon E100(#^^^#^9)4 \(f_{\varphi(1,8,0)[4]}(100)\)
pentastaculated pentacthul-ogdon E100(#^^^#^9)5 \(f_{\varphi(1,8,0)[5]}(100)\)
hexastaculated pentacthul-ogdon E100(#^^^#^9)6 \(f_{\varphi(1,8,0)[6]}(100)\)
heptastaculated pentacthul-ogdon E100(#^^^#^9)7 \(f_{\varphi(1,8,0)[7]}(100)\)
ogdastaculated pentacthul-ogdon E100(#^^^#^9)8 \(f_{\varphi(1,8,0)[8]}(100)\)
ennastaculated pentacthul-ogdon E100(#^^^#^9)9 \(f_{\varphi(1,8,0)[9]}(100)\)
dekastaculated pentacthul-ogdon E100(#^^^#^9)10 \(f_{\varphi(1,8,0)[10]}(100)\)
icosastaculated pentacthul-ogdon E100(#^^^#^9)20 \(f_{\varphi(1,8,0)[20]}(100)\)
triantastaculated pentacthul-ogdon E100(#^^^#^9)30 \(f_{\varphi(1,8,0)[30]}(100)\)
sarantastaculated pentacthul-ogdon E100(#^^^#^9)40 \(f_{\varphi(1,8,0)[40]}(100)\)
penintastaculated pentacthul-ogdon E100(#^^^#^9)50 \(f_{\varphi(1,8,0)[50]}(100)\)
exintastaculated pentacthul-ogdon E100(#^^^#^9)60 \(f_{\varphi(1,8,0)[60]}(100)\)
ebdomintastaculated pentacthul-ogdon E100(#^^^#^9)70 \(f_{\varphi(1,8,0)[70]}(100)\)
ogdontastaculated pentacthul-ogdon E100(#^^^#^9)80 \(f_{\varphi(1,8,0)[80]}(100)\)
enenintastaculated pentacthul-ogdon E100(#^^^#^9)90 \(f_{\varphi(1,8,0)[90]}(100)\)

Sources

Saibian's regiments

Hyper-E regiments: Guppy regiment · Grangol regiment · Greagol regiment · Gigangol regiment · Gorgegol regiment · Gulgol regiment · Gaspgol regiment · Ginorgol regiment · Gargantuul regiment · Googondol regiment
Extended Hyper-E regiments: Gugold regiment · Graatagold regiment · Greegold regiment · Grinningold regiment · Golaagold regiment · Gruelohgold regiment · Gaspgold regiment · Ginorgold regiment · Gargantuuld regiment · Googondold regiment · Gugolthra regiment · Throogol regiment · Tetroogol regiment · Pentoogol regiment · Hexoogol regiment · Heptoogol regiment · Ogdoogol regiment · Entoogol regiment · Dektoogol regiment
Cascading-E regiments: Godgahlah regiment · Gridgahlah regiment · Kubikahlah regiment · Quarticahlah regiment · Quinticahlah regiment · Sexticahlah regiment · Septicahlah regiment · Octicahlah regiment · Nonicahlah regiment · Decicahlah regiment · Godgathor regiment · Gralgathor regiment · Thraelgathor regiment · Terinngathor regiment · Pentaelgathor regiment · Hexaelgathor regiment · Heptaelgathor regiment · Octaelgathor regiment · Ennaelgathor regiment · Dekaelgathor regiment · Godtothol regiment · Godtertol regiment · Godtopol regiment · Godhathor regiment · Godheptol regiment · Godoctol regiment · Godentol regiment · Goddekathol regiment
Extended Cascading-E regiments: Tethrathoth regiment · Monster-Giant regiment · Tethriterator regiment · Tethracross regiment · Tethracubor regiment · Tethrateron regiment · Tethrapeton regiment · Tethrahexon regiment · Tethrahepton regiment · Tethra-ogdon regiment · Tethrennon regiment · Tethradekon regiment · Tethratope regiment · Pentacthulhum regiment · Pentacthulcross regiment · Pentacthulcubor regiment · Pentacthulteron regiment · Pentacthulpeton regiment · Pentacthulhexon regiment · Pentacthulhepton regiment · Pentacthul-ogdon regiment · Pentacthulennon regiment · Pentacthuldekon regiment · Pentacthultope regiment · Hexacthulhum super regiment · Heptacthulhum super regiment · Ogdacthulhum super regiment · Ennacthulhum super regiment · Dekacthulhum super regiment
Beyond...: Blasphemorgulus regiment

Advertisement