Advertisement
11,329
pages

The megafaxul (also called faxulduenek[1]) is equal to kilofaxul!, (faxul!)! or ((200!)!)!, where ! denotes the factorial. The term was coined by Lawrence Hollom. [2] It is also equal to 200!3 using Nested Factorial Notation.

## Etymology

The name of this number is based on SI prefix "mega-" and the number "faxul".

## Approximations in other notations

Notation Lower bound Upper bound
Scientific notation $$10^{10^{10^{377}}}$$ $$10^{10^{10^{378}}}$$
Arrow notation $$10 \uparrow 10 \uparrow 10 \uparrow 377$$ $$10 \uparrow 10 \uparrow 10 \uparrow 378$$
Steinhaus-Moser Notation 168[3][3][3] 169[3][3][3]
Copy notation 2[2[2[378]]] 3[3[3[378]]]
Chained arrow notation $$10 \rightarrow (10 \rightarrow (10 \rightarrow 377))$$ $$10 \rightarrow (10 \rightarrow (10 \rightarrow 378))$$
Taro's multivariable Ackermann function A(3,A(3,A(3,1253))) A(3,A(3,A(3,1254)))
BEAF $$\{10,\{10,\{10,377\}\}\}$$ $$\{10,\{10,\{10,378\}\}\}$$
Hyper-E notation E377#3 E378#3
Bird's array notation $$\{10,\{10,\{10,377\}\}\}$$ $$\{10,\{10,\{10,378\}\}\}$$
Fast-growing hierarchy $$f_2(f_2(f_2(1\,235)))$$ $$f_2(f_2(f_2(1\,236)))$$
Hardy hierarchy $$H_{(\omega^2) 3}(1\,235)$$ $$H_{(\omega^2) 3}(1\,236)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega^\omega}}}(169)$$ $$g_{\omega^{\omega^{\omega^\omega}}}(170)$$

## Conversion

(MegaFaxul)$$!$$ = Gigafaxul

## See also

Hyperfactorial array notation numbers: Minor Faxul Group | Major (Giaxul)
Advertisement