Googology Wiki
Googology Wiki
(Created page with "'''Linesextans''' is equal to [7,1] = 48↑↑8 ~ 10<sup>10<sup>10<sup>10<sup>10<sup>10<sup>8.4180 × 10<sup>80</sup></sup></sup></sup></sup></sup></sup> using [[PlantStar's D...")
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Linesextans''' is equal to [7,1] = 48↑↑8 ~ 10<sup>10<sup>10<sup>10<sup>10<sup>10<sup>8.4180 × 10<sup>80</sup></sup></sup></sup></sup></sup></sup> using [[PlantStar's Debut Notation]].<ref>[https://plantstarslargenumbers.wordpress.com/m2/a1/ Article 2.1: The Lineus Regiment | PlantStar's Large Numbers]</ref> The term was coined by [[User:PlantStarAlpineer0|PlantStar]].
+
'''Lineseptans''' is equal to [7,1] = 48↑↑8 ~ 10<sup>10<sup>10<sup>10<sup>10<sup>10<sup>8.4180 × 10<sup>80</sup></sup></sup></sup></sup></sup></sup> using [[PlantStar's Debut Notation]].<ref>[https://plantstarslargenumbers.wordpress.com/m2/a1/ Article 2.1: The Lineus Regiment | PlantStar's Large Numbers]</ref> The term was coined by [[User:PlantStarAlpineer0|PlantStar]].
   
 
== Approximations ==
 
== Approximations ==
Line 49: Line 49:
 
== Sources ==
 
== Sources ==
 
<references />
 
<references />
  +
  +
== See also ==
  +
{{PlantStar's Debut Notation numbers}}
 
[[Category:Numbers]]
 
[[Category:Numbers]]
 
[[Category:Tetration level]]
 
[[Category:Tetration level]]
 
[[Category:Powers of 48]]
 
[[Category:Powers of 48]]
  +
[[Category:PlantStar's Debut Notation numbers]]

Latest revision as of 02:59, 16 April 2020

Lineseptans is equal to [7,1] = 48↑↑8 ~ 1010101010108.4180 × 1080 using PlantStar's Debut Notation.[1] The term was coined by PlantStar.

Approximations

Notation Approximation
Arrow notation \(48\uparrow\uparrow8\) (exact)
Chained arrow notation \(48\rightarrow8\rightarrow2\) (exact)
Steinhaus-Moser Notation 47[3][3][3][3][3][3][3]
Taro's multivariable Ackermann function A(4,8)
BEAF {48,8,2} (exact)
Bird's array notation {48,8,2} (exact)
Hyper-E notation E[48]1#8 (exact)
Hyper-E notation (base 10 equivalent) E80#7
Strong array notation s(48,8,2) (exact)
Hyperfactorial array notation 10!1
Fast-growing hierarchy \(f_{2}^7(262)\)
Hardy hierarchy \(H_{ω^2\times7}(262)\)
Slow-growing hierarchy \(g_{\omega↑↑8}(48)\) (exact)

Sources

See also