Hyper primitive sequence system is a notation defined by a Japanese googologist Yukito.[1][2] It is an extension of primitive sequence system, which is a subsystem of Bashicu matrix system, using difference sequences. The limit of this notation is \(\psi_0(\Omega_{\omega})\) with respect to fast-growing hierarchy and Buchholz's function. Although it has the same limit as pair sequence system, it expands in a way compatible with the system of fundamental sequences for Buchholz's function unlike pair sequence system.

Definition

A term in the notation is a finite sequence \(S = (S_i)_{i=1}^{m}\) of natural numbers followed by a natural number \(n\) in a bracket, i.e. an expression of the form \((S_1,\ldots,S_m)[n]\). It is evaluated in the following recursive way:

  1. If \(m = 0\), then set \(S[n] = n\).
  2. Suppose \(m > 0\).
    1. For an \(i \in \mathbb{N}\) satisfying \(i \leq m\), put \(P_i = \{j \in \mathbb{N} \mid 1 \leq j < i \land S_j < S_i\}\).
    2. Put \(k = 0\).
    3. If \(k = 0\), then put \(m_k = m\).
    4. If \(k > 0\), then put \(m_k = \max P_{m_{k-1}}\).
    5. If \(P_{m_k} \neq \emptyset\), then increment \(k\), and go back to the line 2-3.
    6. Define a finite sequence \(\textrm{Expand}(S,n)\) in the following way:
      1. If \(k = 0\), then put \(\textrm{Expand}(S,n) = (S_1,\ldots,S_{m-1})\).
      2. Suppose \(k > 0\).
        1. Denote by \(N = (N_i)_{i=0}^{k-1}\) the difference sequence \((S_{m_{i+1}}-S_{m_i})_{i=0}^{k-1}\) of \((S_{m_i})_{i=0}^{k}\).
        2. Define the bad root \(r\) and the ascention level \(\delta\) in the following way:
          1. Suppose \(N_0 = 1\).
            1. Put \(r = m_1\).
            2. Put \(\delta = 0\).
          2. Suppose \(N_0 \neq 1\).
            1. Suppose that there does not exist an \(i \in \mathbb{N}\) such that \(0 < i \leq k-1\) and \(N_i < N_0\).
              1. Put \(r = 1\).
              2. Put \(\delta = S_m - 1\).
            2. Suppose that such an \(i\) exists.
              1. Denote by \(p\) the minimum of such an \(i\).
              2. Put \(r = m_p\).
              3. Put \(\delta = S_m - S_r - 1\).
        3. Put \(G = (S_i)_{i=1}^{r-1}\). (If \(r = 1\), then it is the empty sequence.)
        4. For an \(h \in \mathbb{N}\), put \(B(h) = (S_i + h \delta)_{i=r}^{m-1}\).
        5. Then \(\textrm{Expand}(S,n)\) is the concaternation of \(G,B(0),\ldots,B(n)\).
    7. Set \(S[n] = \textrm{Expand}(S,n)[n+1]\).

The function \((0,\omega)[n]\) defined as \((0,n)[n]\) gives the limit of this notation.

Standard form

The set \(OT\) of finite sequences of standard forms in hyper primitive sequence system is defined in the following recursive way:

  1. For any \(n \in \mathbb{N}\), \((0,n) \in OT\).
  2. For any \((S,n) \in (OT \setminus \{()\}) \times \mathbb{N}\), \(\textrm{Expand}(S,n) \in OT\).

Then \(OT\) is a recursive subset of the set \(T\) of finite sequences of natural numbers, and \(\textrm{Expand}\) gives a primitive recursive map \((T \setminus \{()\}) \times \mathbb{N} \to T\), which preserves standard forms.

Explanation

Follow the convention and the terminology in the article on difference sequences. Hyper primitive sequence system employs the bad root searching rule \(\textrm{Parent} \colon \textrm{FinSeq} \times \mathbb{N} \to \textrm{FinSeq}\) for the primitive sequence system explained here. Indeed \((m_i)_{i=0}^{k}\) and \(N\) in the definition of \(S[n]\) precisely coincide with \(\textrm{Ancestors}(S)\) and \(\textrm{Kaiser}(S)\) respectively.

If \(\textrm{Ancestors}(S)\) is of length \(1\), then \(S\) is a successor term, and \(\textrm{Expand}(S,n)\) is obtained by deleting the rightmost entry of \(S\). If \(\textrm{Ancestors}(S)\) is of length \(> 1\), then apply an expansion rule to \(\textrm{Kaiser}(S)\) quite similar to the one in primitive sequence system; if \(\textrm{Ancestors}(\textrm{Kaiser}(S))\) is of length \(1\), then decrement the rightmost entry of \(\textrm{Kaiser}(S)\), and otherwise, copy the bad part of \(\textrm{Kaiser}(S)\) with respect to \(\textrm{Parent}\). Denote by \(\textrm{Kaiser}(S)(n)\) the resulting finite sequence. As \(\textrm{Kaiser}(S)\) is the differece sequence of \(\textrm{RightNodes}(S)\), \(\textrm{Kaiser}(S)(n)\) is the difference sequence of a unique finite sequence \(\textrm{RightNodes}(S)(n)\) whose first entry is \(\textrm{RightNodes}(S)_0\). Finally, \(\textrm{Expand}(S,n)\) is given by replacing the subsequence \(\textrm{RightNodes}(S)\) of \(S\) by \(\textrm{RightNodes}(S)(n)\) and interpolating the intermidiate entries by the copies of the corresponding entries of \(S\) modified by the ascention level.

Through the interpretation above, hyper primitive sequence system can be regarded as an analog of the system of two-lined hydra diagrams, which corresponds to pair sequence system.

Termination

For the convention and the terminology, see the following:

  • [Buc1] W. Buchholz, A new system of proof-theoretic ordinal functions, Annals of Pure and Applied Logic, Volume 32, 1986, pp. 195–207.
  • [Buc2] W. Buchholz, Relating ordinals to proofs in a perspicious way, Reflections on the Foundations of Mathematics, Essays in Honor of Solomon Feferman, Lecture Notes in Logic, vol. 15, 2002, pp. 37–59.

The termination of hyper primitive sequence system has been proved by a Japanese Googology Wiki user p進大好きbot in the following way:

Let \(T_B\) denote the set of terms in Buchholz's notation, in which \(D_{\omega}\) does not appear.[3] Define a total recursive map \begin{eqnarray*} \textrm{Trans} \colon T_B & \to & T \\ t & \mapsto & \textrm{Trans}(t) \end{eqnarray*} in the following recursive way:

  1. If \(t = 0\), then set \(\textrm{Trans}(t) = ()\).
  2. Suppose \(t = t_0 + D_u t_1\) for some \((u,t_0,t_1) \in \mathbb{N} \times T_B \times T_B\).[4]
    1. If \(t_1 = D_0 0 \cdot m\) for some \(m \in \mathbb{N}\), then \(\textrm{Trans}(t)\) is the concatenation of \(\textrm{Trans}(t_0)\) and \((u,\underbrace{u+1,\ldots,u+1}_{m})\).[5]
    2. Otherwise, \(\textrm{Trans}(t)\) is the concatenation of \(\textrm{Trans}(t_0)\), \((u)\), and the finite sequence obtained by adding \(u+1\) to each entry of \(\textrm{Trans}(t_1)\).

Let \(OT_B \subset T_B\) denote the subset of ordinal terms below \(D_1 0\).[6]

Lemma (Compatibility of \(\textrm{Trans}\))
The restriction of \(\textrm{Trans}\) to \(OT_B\) satisfies the following:
(1) It is a bijective map onto \(OT\).
(2) For any \((t,n) \in (OT_B \setminus \{0\}) \times \mathbb{N}\), \(\textrm{Trans}(t) \neq ()\), and there exists a \(t' \in OT_B\) such that \(\textrm{Trans}(t') = \textrm{Expand}(\textrm{Trans}(t),n)\) and \(t' < t\). If \(n > 0\) then such a \(t'\) can be taken so that \(t[n-1] < t' \leq t[n]\).[7]
proof
For an \(m \in \mathbb{N}\), define \(\Sigma_m \subset OT_B\) in the following recursive way:
  1. If \(m = 0\), then set \(\Sigma_m = \{D_0 D_u 0 \mid u \in \mathbb{N} \land u > 0\}\).
  2. If \(m > 0\), then set \(\Sigma_m = \Sigma_{m-1} \cup \{t[n] \mid (t,n) \in \Sigma_{m-1} \times \mathbb{N}\}\).
By [Buc1] 2.2 Lemma (c) and 2.3 Lemma (b), we have \(\bigcup_{m \in \mathbb{N}} \Sigma_m = OT_B\).
Let \(t \in OT_B\). By the argument above, there exists an \(m \in \mathbb{N}\) such that \(t \in \Sigma_m\). Denote by \(\mu\) the minimum of such an \(m\). We show \(\textrm{Trans}(t) \in OT\) by induction of \(\mu\).
If \(\mu = 0\), then we have \(t = D_0 D_u 0\) for some \(u \in \mathbb{N}\) satisfying \(u > 0\), and hence \(\textrm{Trans}(t) = (0,u) \in OT\). Suppose \(\mu > 0\) in the following. Take a \((t',n) \in \Sigma_{\mu-1} \times \mathbb{N}\) satisfying \(t = t'[n]\). By the induction hypothesis, we have \(\textrm{Trans}(t') \in OT_B\). By \(t \notin \Sigma_{\mu-1}\), we have \(t \neq t'\), and hence \(t' \neq 0\). It implies \(t = t'[n] < t'\) by [Buc1] 3.2 Lemma (a).
Take a unique \((u,t_0,t_1) \in \mathbb{N} \times OT_B \times OT_B\) satisfying \(t' = t_0 + D_u t_1\). By the definition of \(\textrm{Expand}\) and \(\textrm{Trans}\), we have \(\textrm{Trans}(t) = \textrm{Expand}(\textrm{Trans}(t'),n) \in OT_B\) unless \(\textrm{dom}(t_1) = T_v\) for some \(v \in \mathbb{N}\) satifying \(u \leq v\).[8] Therefore we may assume \(\textrm{dom}(t_1) = T_v\) for some \(v \in \mathbb{N}\) satifying \(u \leq v\).
For each \(m \in \mathbb{N}\), denote by \(t_2(m)\) a unique ordinal term satisfying \(o(t_2(m)) = o(t'(m))\), where \(t'(m)\) is the term obtained by replacing the rightmost appearrence of \(D_v 0\) in \(t'[m]\) by \(0\).[9] Again by the definition of \(\textrm{Expand}\) and \(\textrm{Trans}\), \(\textrm{Trans}(t_2(m))\) and \(\textrm{Trans}(t'(m))\) coincide with \(\textrm{Expand}(\textrm{Trans}(t'),m)\).
We have \(t_2(n) \leq t'(n) < t \leq t_2(n+1) \leq t'(n+1)\), and \(t\) coincides with the term obtained by replacing the righmost appearrence of \(0\) in \(t'(n)\) by \(D_v 0\) because of \(t = t'[n]\). Therefore \(\textrm{Trans}(t)\) coincides with the concatenation of \(\textrm{Trans}(t'(n))\) and \((a+v+1)\), where \(a\) is the next rightmost entry of \(\textrm{RightNodes}(\textrm{Trans}(t))\) with respect to the bad root searching rule \(\textrm{Parent}\), and \(\textrm{Trans}(t'(n+1))\) coincides with the concatenation of \(\textrm{Trans}(t)\) and a finite sequence. Since the deletion of the rightmost entry is given by the application of \(\textrm{Expand}(-,0)\), it implies \(t \in OT\).
Thus the restriction of \(\textrm{Trans}\) to \(OT_B\) gives a map to \(OT\). The assertions (1) and (2) immediately follow from the argument above, because of \(\textrm{Trans}(D_0 0 + D_0 0) = (0,0)\) and \(\textrm{Trans}(D_u 0) = (0,u)\) for any \(u \in \mathbb{N}\) satisfying \(u > 0\). □

As is shown in the proof above, hyper primitive sequence system is quite compatible with Buchholz's ordinal notation unlike pair sequence system. By Lemma and [Buc1] 2.2 Lemma (c), we immediately obtain the termination of hyper primitive sequence system restricted to standard forms.

Theorem (The termination of hyper primitive sequence system)
Let \(S \in OT \setminus \{()\}\). For any map \(f \colon \mathbb{N} \to \mathbb{N}\), there exists a unique finite sequence \((X_k)_{k=0}^{N}\) in \(OT\) such that \(X_0 = S\), \(X_k\) is a non-empty sequence satisfying \(\textrm{Expand}(X_k,f(k)) = X_{k+1}\) for any \(k \in \mathbb{N}\) smaller than \(N+1\), and \(X_N= ()\).

Analysis

By Lemma (2), the limit of hyper primitive sequence is \(\psi_0(\Omega_{\omega})\) in Hardy hierarchy with respect to a minor replacedment of the recursive system of fundamental sequences assciated to Buchholz's ordinal notation. In particular, it is also approximated to \(\psi_0(\Omega_{\omega})\) in fast growing hierarchy. The composite \begin{eqnarray*} o \circ (\textrm{Trans} |_{OT_B})^{-1} \colon OT \to \psi_0(\Omega_{\omega}) \end{eqnarray*} gives an interpretation of terms in hyper primitive sequence system of standard form into ordinals below \(\psi_0(\Omega_{\omega})\). The following table exhibits examples of the correspondence:

hyper primitive seqeunce ordinal
\(()\) \(0\)
\((0)\) \(1\)
\((0,0)\) \(2\)
\((0,0,0)\) \(3\)
\((0,1)\) \(\omega\)
\((0,1,0)\) \(\omega+1\)
\((0,1,0,0)\) \(\omega+2\)
\((0,1,0,0,0)\) \(\omega+3\)
\((0,1,0,1)\) \(\omega \times 2\)
\((0,1,0,1,0)\) \(\omega \times 2+1\)
\((0,1,0,1,0,0)\) \(\omega \times 2+2\)
\((0,1,0,1,0,0,0)\) \(\omega \times 2+3\)
\((0,1,0,1,0,1)\) \(\omega \times 3\)
\((0,1,1)\) \(\omega^2\)
\((0,1,1,0)\) \(\omega^2+1\)
\((0,1,1,0,0)\) \(\omega^2+2\)
\((0,1,1,0,1)\) \(\omega^2+\omega\)
\((0,1,1,0,1,0)\) \(\omega^2+\omega+1\)
\((0,1,1,0,1,1)\) \(\omega^2 \times 2\)
\((0,1,1,1)\) \(\omega^3\)
\((0,1,2)\) \(\omega^{\omega}\)
\((0,1,2,1)\) \(\omega^{\omega+1}\)
\((0,1,2,1,1)\) \(\omega^{\omega+2}\)
\((0,1,2,1,2)\) \(\omega^{\omega \times 2}\)
\((0,1,2,2)\) \(\omega^{\omega^2}\)
\((0,1,2,2,1)\) \(\omega^{\omega^2+1}\)
\((0,1,2,2,1,1)\) \(\omega^{\omega^2+2}\)
\((0,1,2,2,1,2)\) \(\omega^{\omega^2+\omega}\)
\((0,1,2,2,1,2,1)\) \(\omega^{\omega^2+\omega+1}\)
\((0,1,2,2,1,2,1,1)\) \(\omega^{\omega^2+\omega+2}\)
\((0,1,2,2,1,2,1,2)\) \(\omega^{\omega^2+\omega \times 2}\)
\((0,1,2,2,1,2,2)\) \(\omega^{\omega^2 \times 2}\)
\((0,1,2,2,2)\) \(\omega^{\omega^3}\)
\((0,1,2,3)\) \(\omega^{\omega^{\omega}}\)
\((0,2)\) \(\varepsilon_0 = \psi_0(\Omega)\)
\((0,2,1)\) \(\varepsilon_0 \times \omega = \psi_0(\Omega+1)\)
\((0,2,1,1)\) \(\varepsilon_0 \times \omega^2 = \psi_0(\Omega+2)\)
\((0,2,1,2)\) \(\varepsilon_0 \times \omega^{\omega} = \psi_0(\Omega+\omega)\)
\((0,2,1,2,1)\) \(\varepsilon_0 \times \omega^{\omega+1} = \psi_0(\Omega+\omega+1)\)
\((0,2,1,2,1,1)\) \(\varepsilon_0 \times \omega^{\omega+2} = \psi_0(\Omega+\omega+2)\)
\((0,2,1,2,1,2)\) \(\varepsilon_0 \times \omega^{\omega \times 2} = \psi_0(\Omega+\omega \times 2)\)
\((0,2,1,2,2)\) \(\varepsilon_0 \times \omega^{\omega^2} = \psi_0(\Omega+\omega^2)\)
\((0,2,1,2,3)\) \(\varepsilon_0 \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\omega^{\omega})\)
\((0,2,1,3)\) \(\varepsilon_0^2 = \psi_0(\Omega+\psi_0(\Omega))\)
\((0,2,1,3,1)\) \(\varepsilon_0^2 \times \omega = \psi_0(\Omega+\psi_0(\Omega)+1)\)
\((0,2,1,3,1,2)\) \(\varepsilon_0^2 \times \omega^{\omega} = \psi_0(\Omega+\psi_0(\Omega)+\omega)\)
\((0,2,1,3,1,2,3)\) \(\varepsilon_0^2 \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega)+\omega^{\omega})\)
\((0,2,1,3,1,3)\) \(\varepsilon_0^3 = \psi_0(\Omega+\psi_0(\Omega) \times 2)\)
\((0,2,1,3,2)\) \(\varepsilon_0^{\omega} = \psi_0(\Omega+\psi_0(\Omega+1))\)
\((0,2,1,3,2,1)\) \(\varepsilon_0^{\omega} \times \omega = \psi_0(\Omega+\psi_0(\Omega+1)+1)\)
\((0,2,1,3,2,1,2)\) \(\varepsilon_0^{\omega} \times \omega^{\omega} = \psi_0(\Omega+\psi_0(\Omega+1)+\omega)\)
\((0,2,1,3,2,1,2,3)\) \(\varepsilon_0^{\omega} \times \omega^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+1)+\omega^{\omega})\)
\((0,2,1,3,2,1,3)\) \(\varepsilon_0^{\omega+1} = \psi_0(\Omega+\psi_0(\Omega+1)+\psi_0(\Omega))\)
\((0,2,1,3,2,1,3,1)\) \(\varepsilon_0^{\omega+1} \times \omega = \psi_0(\Omega+\psi_0(\Omega+1)+\psi_0(\Omega)+1)\)
\((0,2,1,3,2,1,3,2)\) \(\varepsilon_0^{\omega \times 2} = \psi_0(\Omega+\psi_0(\Omega+1) \times 2)\)
\((0,2,1,3,2,2)\) \(\varepsilon_0^{\omega^2} = \psi_0(\Omega+\psi_0(\Omega+2))\)
\((0,2,1,3,2,2,1)\) \(\varepsilon_0^{\omega^2} \times \omega = \psi_0(\Omega+\psi_0(\Omega+2)+1)\)
\((0,2,1,3,2,2,2)\) \(\varepsilon_0^{\omega^3} = \psi_0(\Omega+\psi_0(\Omega+3))\)
\((0,2,1,3,2,3)\) \(\varepsilon_0^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\omega))\)
\((0,2,1,3,2,3,1)\) \(\varepsilon_0^{\omega^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\omega)+1)\)
\((0,2,1,3,2,3,2)\) \(\varepsilon_0^{\omega^{\omega} \times \omega} = \psi_0(\Omega+\psi_0(\Omega+\omega+1))\)
\((0,2,1,3,2,3,3)\) \(\varepsilon_0^{\omega^{\omega^2}} = \psi_0(\Omega+\psi_0(\Omega+\omega^2))\)
\((0,2,1,3,2,3,4)\) \(\varepsilon_0^{\omega^{\omega^{\omega}}} = \psi_0(\Omega+\psi_0(\Omega+\omega^{\omega}))\)
\((0,2,1,3,2,4)\) \(\varepsilon_0^{\varepsilon_0} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega)))\)
\((0,2,1,3,2,4,1)\) \(\varepsilon_0^{\varepsilon_0} \times \omega = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega))+1)\)
\((0,2,1,3,2,4,2)\) \(\varepsilon_0^{\varepsilon_0 \times \omega} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega)+1))\)
\((0,2,1,3,2,4,3)\) \(\varepsilon_0^{\varepsilon_0^{\omega}} = \psi_0(\Omega+\psi_0(\Omega+\psi_0(\Omega+1)))\)
\((0,2,2)\) \(\varepsilon_0 \uparrow \uparrow \omega = \psi_0(\Omega \times 2)\)
\((0,2,2,1)\) \(\psi_0(\Omega \times 2+1)\)
\((0,2,2,2)\) \(\psi_0(\Omega \times 3)\)
\((0,2,3)\) \(\psi_0(\Omega \times \omega) = \psi_0(\psi_1(\psi_0(0)))\)
\((0,2,3,1)\) \(\psi_0(\Omega \times \omega + 1) = \psi_0(\psi_1(\psi_0(0))+\psi_0(0))\)
\((0,2,3,2)\) \(\psi_0(\Omega \times (\omega + 1)) = \psi_0(\psi_1(\psi_0(0))+\psi_1(0))\)
\((0,2,3,3)\) \(\psi_0(\Omega \times \omega^2) = \psi_0(\psi_1(\psi_0(0)+\psi_0(0)))\)
\((0,2,3,4)\) \(\psi_0(\Omega \times \omega^{\omega}) = \psi_0(\psi_1(\psi_0(\psi_0(0))))\)
\((0,2,3,4,1)\) \(\psi_0(\Omega \times \omega^{\omega}+1) = \psi_0(\psi_1(\psi_0(\psi_0(0)))+\psi_0(0))\)
\((0,2,3,4,2)\) \(\psi_0(\Omega \times (\omega^{\omega}+1)) = \psi_0(\psi_1(\psi_0(\psi_0(0)))+\psi_1(0))\)
\((0,2,3,4,3)\) \(\psi_0(\Omega \times \omega^{\omega+1}) = \psi_0(\psi_1(\psi_0(\psi_0(0))+\psi_0(0)))\)
\((0,2,3,4,4)\) \(\psi_0(\Omega \times \omega^{\omega \times 2}) = \psi_0(\psi_1(\psi_0(\psi_0(0)+\psi_0(0))))\)
\((0,2,3,4,5)\) \(\psi_0(\Omega \times \omega^{\omega^{\omega}}) = \psi_0(\psi_1(\psi_0(\psi_0(\psi_0(0)))))\)
\((0,2,3,5)\) \(\psi_0(\Omega \times \psi_0(\Omega)) = \psi_0(\psi_1(\psi_0(\psi_1(0))))\)
\((0,2,4)\) \(\psi_0(\Omega^2) = \psi_0(\psi_1(\psi_1(0)))\)
\((0,2,4,1)\) \(\psi_0(\Omega^2+1) = \psi_0(\psi_1(\psi_1(0))+\psi_0(0))\)
\((0,2,4,2)\) \(\psi_0(\Omega^2+\Omega) = \psi_0(\psi_1(\psi_1(0))+\psi_1(0))\)
\((0,2,4,3)\) \(\psi_0(\Omega^2 \times \omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0)))\)
\((0,2,4,3,1)\) \(\psi_0(\Omega^2 \times \omega + 1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0))+\psi_0(0))\)
\((0,2,4,3,2)\) \(\psi_0(\Omega^2 \times \omega + \Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0))+\psi_1(0))\)
\((0,2,4,3,3)\) \(\psi_0(\Omega^2 \times \omega^2) = \psi_0(\psi_1(\psi_1(0)+\psi_0(0)+\psi_0(0)))\)
\((0,2,4,3,4)\) \(\psi_0(\Omega^2 \times \omega^{\omega}) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_0(0))))\)
\((0,2,4,3,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0))))\)
\((0,2,4,3,5,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)))+\psi_0(0))\)
\((0,2,4,3,5,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)))+\psi_1(0))\)
\((0,2,4,3,5,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0))+\psi_0(0)))\)
\((0,2,4,3,5,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega+\omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)+\psi_0(0))))\)
\((0,2,4,3,5,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times 2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(0)+\psi_1(0))))\)
\((0,2,4,3,5,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)))))\)
\((0,2,4,3,5,6,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))))+\psi_0(0))\)
\((0,2,4,3,5,6,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))))+\psi_1(0))\)
\((0,2,4,3,5,6,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)))+\psi_0(0)))\)
\((0,2,4,3,5,6,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega+\omega))= \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))+\psi_0(0))))\)
\((0,2,4,3,5,6,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times (\omega+1))) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0))+\psi_1(0))))\)
\((0,2,4,3,5,6,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega^2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(0)+\psi_0(0)))))\)
\((0,2,4,3,5,6,7)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \omega^{\omega})) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(\psi_0(0))))))\)
\((0,2,4,3,5,6,8)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega \times \psi_0(\Omega))) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_0(\psi_1(0))))))\)
\((0,2,4,3,5,7)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)))))\)
\((0,2,4,3,5,7,1)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)+1) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))))+\psi_0(0))\)
\((0,2,4,3,5,7,2)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))))+\psi_1(0))\)
\((0,2,4,3,5,7,3)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2+1)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)))+\psi_0(0)))\)
\((0,2,4,3,5,7,4)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2)^{\omega}) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))+\psi_0(0))))\)
\((0,2,4,3,5,7,5)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2+\Omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0))+\psi_1(0))))\)
\((0,2,4,3,5,7,6)\) \(\psi_0(\Omega^2 \times \psi_0(\Omega^2 \times \omega)) = \psi_0(\psi_1(\psi_1(0)+\psi_0(\psi_1(\psi_1(0)+\psi_0(0)))))\)
\((0,2,4,4)\) \(\psi_0(\Omega^3) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)))\)
\((0,2,4,4,1)\) \(\psi_0(\Omega^3+1) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0))+\psi_0(0))\)
\((0,2,4,4,2)\) \(\psi_0(\Omega^3+\Omega) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0))+\psi_1(0))\)
\((0,2,4,4,3)\) \(\psi_0(\Omega^3 \times \omega) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)+\psi_0(0)))\)
\((0,2,4,4,4)\) \(\psi_0(\Omega^4) = \psi_0(\psi_1(\psi_1(0)+\psi_1(0)+\psi_1(0)))\)
\((0,2,4,5)\) \(\psi_0(\Omega^{\omega}) = \psi_0(\psi_1(\psi_1(\psi_0(0))))\)
\((0,2,4,5,1)\) \(\psi_0(\Omega^{\omega}+1) = \psi_0(\psi_1(\psi_1(\psi_0(0)))+\psi_0(0))\)
\((0,2,4,5,2)\) \(\psi_0(\Omega^{\omega}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(0)))+\psi_1(0))\)
\((0,2,4,5,3)\) \(\psi_0(\Omega^{\omega} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(0))+\psi_0(0)))\)
\((0,2,4,5,4)\) \(\psi_0(\Omega^{\omega+1}) = \psi_0(\psi_1(\psi_1(\psi_0(0))+\psi_1(0)))\)
\((0,2,4,5,5)\) \(\psi_0(\Omega^{\omega^2}) = \psi_0(\psi_1(\psi_1(\psi_0(0)+\psi_0(0))))\)
\((0,2,4,5,6)\) \(\psi_0(\Omega^{\omega^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_0(0)))))\)
\((0,2,4,5,7)\) \(\psi_0(\Omega^{\psi_0(\Omega)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))))\)
\((0,2,4,5,7,1)\) \(\psi_0(\Omega^{\psi_0(\Omega)}+1) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))))+\psi_0(0))\)
\((0,2,4,5,7,2)\) \(\psi_0(\Omega^{\psi_0(\Omega)}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))))+\psi_1(0))\)
\((0,2,4,5,7,3)\) \(\psi_0(\Omega^{\psi_0(\Omega)} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))+\psi_0(0)))\)
\((0,2,4,5,7,4)\) \(\psi_0(\Omega^{\psi_0(\Omega)+1}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)))+\psi_1(0)))\)
\((0,2,4,5,7,5)\) \(\psi_0(\Omega^{\psi_0(\Omega+1)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0))+\psi_0(0))))\)
\((0,2,4,5,7,6)\) \(\psi_0(\Omega^{\psi_0(\Omega)^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)+\psi_0(0)))))\)
\((0,2,4,5,7,7)\) \(\psi_0(\Omega^{\psi_0(\Omega \times 2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(0)+\psi_1(0)))))\)
\((0,2,4,5,7,8)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))))\)
\((0,2,4,5,7,8,1)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}+1) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))))+\psi_0(0))\)
\((0,2,4,5,7,8,2)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)}+\Omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))))+\psi_1(0))\)
\((0,2,4,5,7,8,3)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)} \times \omega) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))+\psi_0(0)))\)
\((0,2,4,5,7,8,4)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)+1}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))))+\psi_1(0)))\)
\((0,2,4,5,7,8,5)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega+1)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)))+\psi_0(0))))\)
\((0,2,4,5,7,8,6)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega)^{\omega}}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))+\psi_0(0)))))\)
\((0,2,4,5,7,8,7)\) \(\psi_0(\Omega^{\psi_0(\Omega \times (\omega+1))}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0))+\psi_1(0)))))\)
\((0,2,4,5,7,8,8)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega^2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(0)+\psi_0(0))))))\)
\((0,2,4,5,7,8,9)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \omega^{\omega})}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(\psi_0(0)))))))\)
\((0,2,4,5,7,8,10)\) \(\psi_0(\Omega^{\psi_0(\Omega \times \psi_0(\Omega))}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_0(\psi_1(0)))))))\)
\((0,2,4,5,7,9)\) \(\psi_0(\Omega^{\psi_0(\Omega^2)}) = \psi_0(\psi_1(\psi_1(\psi_0(\psi_1(\psi_1(0))))))\)
\((0,2,4,6)\) \(\psi_0(\Omega^{\Omega}) = \psi_0(\psi_1(\psi_1(\psi_1(0))))\)
\((0,3)\) \(\psi_0(\Omega_2) = \psi_0(\psi_2(0))\)
\((0,3,1)\) \(\psi_0(\Omega_2+1) = \psi_0(\psi_2(0)+\psi_0(0))\)
\((0,3,2)\) \(\psi_0(\Omega_2+\Omega) = \psi_0(\psi_2(0)+\psi_1(0))\)
\((0,3,3)\) \(\psi_0(\Omega_2 \times 2) = \psi_0(\psi_2(0)+\psi_2(0))\)
\((0,3,4)\) \(\psi_0(\Omega_2 \times \omega) = \psi_0(\psi_2(\psi_0(0)))\)
\((0,3,5)\) \(\psi_0(\Omega_2 \times \Omega) = \psi_0(\psi_2(\psi_1(0)))\)
\((0,3,6)\) \(\psi_0(\Omega_2^2) = \psi_0(\psi_2(\psi_2(0)))\)
\((0,4)\) \(\psi_0(\Omega_3) = \psi_0(\psi_3(0))\)
\((0,n+1)\) \(\psi_0(\Omega_n) = \psi_0(\psi_n(0))\)

Sources

  1. The user page of Yukito in the Japanese Googology Wiki.
  2. Yukito, ハイパー原始数列
  3. The notation is defined in [Buc1] p. 200.
  4. The addition is defined in [Buc1] p. 203.
  5. The scalar multiplication is defined in [Buc1] p. 203.
  6. The notion of an ordinal term is defined in [Buc1] p. 201.
  7. The recursive system of fundamental sequences is defined in [Buc1] p. 203--204 except for the case of ([].4) (ii). Replacing ([].4) (ii) by the rule 6 in Definition in [Buc2] p. 6 applied to the convention \(\Omega_0 = 1\), we obtain the full definition of the recursive system of fundamental sequences.
  8. The map \(\textrm{dom}\) is defined in [Buc1] p. 203--204.
  9. The map \(o\) is defined in [Buc1] p. 201.

See also

Fish numbers: Fish number 1 · Fish number 2 · Fish number 3 · Fish number 4 · Fish number 5 · Fish number 6 · Fish number 7
Mapping functions: S map · SS map · S(n) map · M(n) map · M(m,n) map
By Aeton: Okojo numbers · N-growing hierarchy
By BashicuHyudora: Primitive sequence number · Pair sequence number · Bashicu matrix system
By Kanrokoti: KumaKuma ψ function
By 巨大数大好きbot: Flan numbers
By Jason: Irrational arrow notation · δOCF · δφ · ε function
By mrna: 段階配列表記 · 降下段階配列表記 · 多変数段階配列表記 · SSAN · S-σ
By Nayuta Ito: N primitive
By p進大好きbot: Large Number Garden Number
By Yukito: Hyper primitive sequence system · Y sequence · YY sequence · Y function
Indian counting system: Lakh · Crore · Tallakshana · Uppala · Dvajagravati · Paduma · Mahakathana · Asankhyeya · Dvajagranisamani · Vahanaprajnapti · Inga · Kuruta · Sarvanikshepa · Agrasara · Uttaraparamanurajahpravesa · Avatamsaka Sutra · Nirabhilapya nirabhilapya parivarta
Chinese, Japanese and Korean counting system: Wan · Yi · Zhao · Jing · Gai · Zi · Rang · Gou · Jian · Zheng · Zai · Ji · Gougasha · Asougi · Nayuta · Fukashigi · Muryoutaisuu
Other: Taro's multivariable Ackermann function · TR function · Arai's \(\psi\) · Sushi Kokuu Hen

Community content is available under CC-BY-SA unless otherwise noted.