11,328
pages

The hexacthulhum super regiment is a series of numbers from E100#^^^^#100 to E100#{5}#(E100#{5}#(E100#{5}#(E100#{5}#(E100#{5}#100)))) defined using Extended Cascading-E Notation (i.e. beginning from hexacthulhum and up to hexacthularxi-hexacthularxi-hexacthularxi-hexacthularxi-hexacthularxihect).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Pentacthultope regiment Heptacthulhum super regiment

## List of numbers of the regiment

 Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation) hexacthulhum E100#^^^^#100 $$f_{\varphi(2,0,0)}(100)$$ grand hexacthulhum E100#^^^^#100#2 $$f^2_{\varphi(2,0,0)}(100)$$ grangol-carta-hexacthulhum E100#^^^^#100#100 $$f_{\varphi(2,0,0)+1}(100)$$ hexacthulhum-by-deuteron E100#^^^^#100#^^^^#100 $$f_{\varphi(2,0,0)2}(100)$$ hexacthulhum-by-hyperionn E100#^^^^#*#100 $$f_{\varphi(2,0,0)\omega}(100)$$ deutero-hexacthulhum E100#^^^^#*#^^^^#100 $$f_{\varphi(2,0,0)^2}(100)$$ hexacthulhufact E100(#^^^^#)^#100 $$f_{\varphi(2,0,0)^\omega}(100)$$ hexacthulhum-ipso-hexacthulhum E100(#^^^^#)^(#^^^^#)100 $$f_{\varphi(2,0,0)^{\varphi(2,0,0)}}(100)$$ terrible hexacthulhum E100(#^^^^#)^^#100 $$f_{\varepsilon_{\varphi(2,0,0)+1}}(100)$$ dupentated hexacthulhum E100(#^^^^#)^^(#^^^^#)100 $$f_{\varphi(\varphi(2,0,0),1)}(100)$$ horrible hexacthulhum E100(#^^^^#)^^^#100 $$f_{\Gamma_{\varphi(2,0,0)+1}}(100)$$ horrisquared hexacthulhum E100(#^^^^#)^^^##100 $$f_{\varphi(1,1,\varphi(2,0,0)+1)}(100)$$ horricubed hexacthulhum E100(#^^^^#)^^^###100 $$f_{\varphi(1,2,\varphi(2,0,0)+1)}(100)$$ horritesserated hexacthulhum E100(#^^^^#)^^^####100 $$f_{\varphi(1,3,\varphi(2,0,0)+1)}(100)$$ horripenterated hexacthulhum E100((#^^^^#)^^^#^5)100 $$f_{\varphi(1,4,\varphi(2,0,0)+1)}(100)$$ horrihexerated hexacthulhum E100((#^^^^#)^^^#^6)100 $$f_{\varphi(1,5,\varphi(2,0,0)+1)}(100)$$ horrihepterated hexacthulhum E100((#^^^^#)^^^#^7)100 $$f_{\varphi(1,6,\varphi(2,0,0)+1)}(100)$$ horriocterated hexacthulhum E100((#^^^^#)^^^#^8)100 $$f_{\varphi(1,7,\varphi(2,0,0)+1)}(100)$$ horriennerated hexacthulhum E100((#^^^^#)^^^#^9)100 $$f_{\varphi(1,8,\varphi(2,0,0)+1)}(100)$$ horridekerated hexacthulhum E100((#^^^^#)^^^#^10)100 $$f_{\varphi(1,9,\varphi(2,0,0)+1)}(100)$$ godgahlah-pentated-hexacthulhum, horritoped hexacthulhum E100(#^^^^#)^^^#^#100 $$f_{\varphi(1,\omega,\varphi(2,0,0)+1)}(100)$$ tethrathoth-pentated-hexacthulhum E100(#^^^^#)^^^#^^#100 $$f_{\varphi(1,\varepsilon_0,\varphi(2,0,0)+1)}(100)$$ pentacthulhum-pentated-hexacthulhum E100(#^^^^#)^^^#^^^#100 $$f_{\varphi(1,\Gamma_0,\varphi(2,0,0)+1)}(100)$$ pentacthularxitri-pentated-hexacthulhum E100(#^^^^#)^^^#^^^#^^^#100 $$f_{\varphi(1,\varphi(1,\Gamma_0,0),\varphi(2,0,0)+1)}(100)$$ pentacthularxitet-pentated-hexacthulhum E100(#^^^^#)^^^#^^^#^^^#^^^#100 $$f_{\varphi(1,\varphi(1,\varphi(1,\Gamma_0,0),0),\varphi(2,0,0)+1)}(100)$$ pentacthularxipent-pentated-hexacthulhum E100(#^^^^#)^^^#^^^#^^^#^^^#^^^#100 $$f_{\varphi(1,\varphi(2,0,0),1)[5]}(100)$$ pentacthularxihex-pentated-hexacthulhum E100(#^^^^#)^^^#^^^^#6 $$f_{\varphi(1,\varphi(2,0,0),1)[6]}(100)$$ pentacthularxiheptpentated-hexacthulhum E100(#^^^^#)^^^#^^^^#7 $$f_{\varphi(1,\varphi(2,0,0),1)[7]}(100)$$ pentacthularxi-ogd-pentated-hexacthulhum E100(#^^^^#)^^^#^^^^#8 $$f_{\varphi(1,\varphi(2,0,0),1)[8]}(100)$$ pentacthularxi-enn-pentated-hexacthulhum E100(#^^^^#)^^^#^^^^#9 $$f_{\varphi(1,\varphi(2,0,0),1)[9]}(100)$$ pentacthularxideck-pentated-hexacthulhum E100(#^^^^#)^^^#^^^^#10 $$f_{\varphi(1,\varphi(2,0,0),1)[10]}(100)$$ duhexated hexacthulhum E100(#^^^^#)^^^(#^^^^#)100 $$f_{\varphi(1,\varphi(2,0,0),1)}(100)$$ trihexated hexacthulhum E100(#^^^^#)^^^(#^^^^#)^^^(#^^^^#)100 $$f_{\varphi(1,\varphi(1,\varphi(2,0,0),1),0)}(100)$$ quadrahexated hexacthulhum E100(#^^^^#)^^^^#4 $$f_{\varphi(1,\varphi(1,\varphi(1,\varphi(2,0,0),1),0),0)}(100)$$ quinquahexated hexacthulhum E100(#^^^^#)^^^^#5 $$f_{\varphi(2,0,1)[5]}(100)$$ sexahexated hexacthulhum E100(#^^^^#)^^^^#6 $$f_{\varphi(2,0,1)[6]}(100)$$ septahexated hexacthulhum E100(#^^^^#)^^^^#7 $$f_{\varphi(2,0,1)[7]}(100)$$ octahexated hexacthulhum E100(#^^^^#)^^^^#8 $$f_{\varphi(2,0,1)[8]}(100)$$ nonahexated hexacthulhum E100(#^^^^#)^^^^#9 $$f_{\varphi(2,0,1)[9]}(100)$$ decahexated hexacthulhum E100(#^^^^#)^^^^#10 $$f_{\varphi(2,0,1)[10]}(100)$$ hexadeucthulhum, horrendous hexacthulhum E100(#^^^^#)^^^^#100 $$f_{\varphi(2,0,1)}(100)$$ hexacthuliterator, hexacthulhum ba'al E100#^^^^#>#100 $$f_{\varphi(2,0,\omega)}(100)$$ grand hexacthuliterator, great and horrendous hexacthulhum E100#^^^^#>#100#2 $$f^2_{\varphi(2,0,\omega)}(100)$$ godgahlah-turreted-hexacthulhum E100#^^^^#>#^#100 $$f_{\varphi(2,0,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulhum E100#^^^^#>#^^#100 $$f_{\varphi(2,0,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulhum E100#^^^^#>#^^^#100 $$f_{\varphi(2,0,\Gamma_0)}(100)$$ dustaculated hexacthulhum E100#^^^^#>#^^^^#100 $$f_{\varphi(2,0,\varphi(2,0,0))}(100)$$ tristaculated hexacthulhum E100#^^^^#>#^^^^#>#^^^^#100 $$f_{\varphi(2,0,\varphi(2,0,\varphi(2,0,0)))}(100)$$ tetrastaculated hexacthulhum E100#^^^^##4 $$f_{\varphi(2,0,\varphi(2,0,\varphi(2,0,\varphi(2,0,0))))}(100)$$ pentastaculated hexacthulhum E100#^^^^##5 $$f_{\varphi(2,1,0)[5]}(100)$$ hexastaculated hexacthulhum E100#^^^^##6 $$f_{\varphi(2,1,0)[6]}(100)$$ heptastaculated hexacthulhum E100#^^^^##7 $$f_{\varphi(2,1,0)[7]}(100)$$ octastaculated hexacthulhum E100#^^^^##8 $$f_{\varphi(2,1,0)[8]}(100)$$ ennastaculated hexacthulhum E100#^^^^##9 $$f_{\varphi(2,1,0)[9]}(100)$$ dekastaculated hexacthulhum E100#^^^^##10 $$f_{\varphi(2,1,0)[10]}(100)$$ hexacthulcross E100#^^^^##100 $$f_{\varphi(2,1,0)}(100)$$ hexacthulitercross E100#^^^^##>#100 $$f_{\varphi(2,1,\omega)}(100)$$ godgahlah-turreted-hexacthulcross E100#^^^^##>#^#100 $$f_{\varphi(2,1,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulcross E100#^^^^##>#^^#100 $$f_{\varphi(2,1,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulcross E100#^^^^##>#^^^#100 $$f_{\varphi(2,1,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulcross E100#^^^^##>#^^^^#100 $$f_{\varphi(2,1,\varphi(2,0,0))}(100)$$ dustaculated hexacthulcross E100#^^^^##>#^^^^##100 $$f_{\varphi(2,1,\varphi(2,1,0))}(100)$$ tristaculated hexacthulcross E100#^^^^##>#^^^^##>#^^^^##100 $$f_{\varphi(2,1,\varphi(2,1,\varphi(2,1,0)))}(100)$$ tetrastaculated hexacthulcross E100#^^^^###4 $$f_{\varphi(2,1,\varphi(2,1,\varphi(2,1,\varphi(2,1,0))))}(100)$$ pentastaculated hexacthulcross E100#^^^^###5 $$f_{\varphi(2,2,0)[5]}(100)$$ hexastaculated hexacthulcross E100#^^^^###6 $$f_{\varphi(2,2,0)[6]}(100)$$ heptastaculated hexacthulcross E100#^^^^###7 $$f_{\varphi(2,2,0)[7]}(100)$$ ogdastaculated hexacthulcross E100#^^^^###8 $$f_{\varphi(2,2,0)[8]}(100)$$ ennastaculated hexacthulcross E100#^^^^###9 $$f_{\varphi(2,2,0)[9]}(100)$$ dekastaculated hexacthulcross E100#^^^^###10 $$f_{\varphi(2,2,0)[10]}(100)$$ hexacthulcubor E100#^^^^###100 $$f_{\varphi(2,2,0)}(100)$$ hexacthulitercubor E100#^^^^###>#100 $$f_{\varphi(2,2,\omega)}(100)$$ godgahlah-turreted-hexacthulcubor E100#^^^^###>#^#100 $$f_{\varphi(2,2,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulcubor E100#^^^^###>#^^#100 $$f_{\varphi(2,2,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulcubor E100#^^^^###>#^^^#100 $$f_{\varphi(2,2,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulcubor E100#^^^^###>#^^^^#100 $$f_{\varphi(2,2,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulcubor E100#^^^^###>#^^^^##100 $$f_{\varphi(2,2,\varphi(2,1,0))}(100)$$ dustaculated hexacthulcubor, hexacthulcubor-turreted-hexacthulcubor E100#^^^^###>#^^^^###100 $$f_{\varphi(2,2,\varphi(2,2,0))}(100)$$ tristaculated hexacthulcubor E100#^^^^###>#^^^^###>#^^^^###100 $$f_{\varphi(2,2,\varphi(2,2,\varphi(2,2,0)))}(100)$$ tetrastaculated hexacthulcubor E100#^^^^####4 $$f_{\varphi(2,2,\varphi(2,2,\varphi(2,2,\varphi(2,2,0))))}(100)$$ pentastaculated hexacthulcubor E100#^^^^####5 $$f_{\varphi(2,3,0)[5]}(100)$$ hexastaculated hexacthulcubor E100#^^^^####6 $$f_{\varphi(2,3,0)[6]}(100)$$ heptastaculated hexacthulcubor E100#^^^^####7 $$f_{\varphi(2,3,0)[7]}(100)$$ ogdastaculated hexacthulcubor E100#^^^^####8 $$f_{\varphi(2,3,0)[8]}(100)$$ ennastaculated hexacthulcubor E100#^^^^####9 $$f_{\varphi(2,3,0)[9]}(100)$$ dekastaculated hexacthulcubor E100#^^^^####10 $$f_{\varphi(2,3,0)[10]}(100)$$ hexacthulteron E100#^^^^####100 $$f_{\varphi(2,3,0)}(100)$$ hexacthuliterteron E100#^^^^####>#100 $$f_{\varphi(2,3,\omega)}(100)$$ godgahlah-turreted-hexacthulteron E100#^^^^####>#^#100 $$f_{\varphi(2,3,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulteron E100#^^^^####>#^^#100 $$f_{\varphi(2,3,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulteron E100#^^^^####>#^^^#100 $$f_{\varphi(2,3,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulteron E100#^^^^####>#^^^^#100 $$f_{\varphi(2,3,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulteron E100#^^^^####>#^^^^##100 $$f_{\varphi(2,3,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthulteron E100#^^^^####>#^^^^###100 $$f_{\varphi(2,3,\varphi(2,2,0))}(100)$$ dustaculated hexacthulteron, hexacthulteron-turreted-hexacthulteron E100#^^^^####>#^^^^####100 $$f_{\varphi(2,3,\varphi(2,3,0))}(100)$$ tristaculated hexacthulteron E100#^^^^####>#^^^^####>#^^^^####100 $$f_{\varphi(2,3,\varphi(2,3,\varphi(2,3,0)))}(100)$$ tetrastaculated hexacthulteron E100(#^^^^#^5)4 $$f_{\varphi(2,3,\varphi(2,3,\varphi(2,3,\varphi(2,3,0))))}(100)$$ pentastaculated hexacthulteron E100(#^^^^#^5)5 $$f_{\varphi(2,4,0)[5]}(100)$$ hexastaculated hexacthulteron E100(#^^^^#^5)6 $$f_{\varphi(2,4,0)[6]}(100)$$ heptastaculated hexacthulteron E100(#^^^^#^5)7 $$f_{\varphi(2,4,0)[7]}(100)$$ ogdastaculated hexacthulteron E100(#^^^^#^5)8 $$f_{\varphi(2,4,0)[8]}(100)$$ ennastaculated hexacthulteron E100(#^^^^#^5)9 $$f_{\varphi(2,4,0)[9]}(100)$$ dekastaculated hexacthulteron E100(#^^^^#^5)10 $$f_{\varphi(2,4,0)[10]}(100)$$ hexacthulpeton E100(#^^^^#^5)100 $$f_{\varphi(2,4,0)}(100)$$ hexacthuliterpeton E100#^^^^(#^5)>#100 $$f_{\varphi(2,4,\omega)}(100)$$ godgahlah-turreted-hexacthulpeton E100#^^^^(#^5)>#^#100 $$f_{\varphi(2,4,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulpeton E100#^^^^(#^5)>#^^#100 $$f_{\varphi(2,4,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^#100 $$f_{\varphi(2,4,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^^#100 $$f_{\varphi(2,4,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^^##100 $$f_{\varphi(2,4,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^^###100 $$f_{\varphi(2,4,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^^####100 $$f_{\varphi(2,4,\varphi(2,3,0))}(100)$$ dustaculated hexacthulpeton, hexacthulpeton-turreted-hexacthulpeton E100#^^^^(#^5)>#^^^^(#^5)100 $$f_{\varphi(2,4,\varphi(2,4,0))}(100)$$ tristaculated hexacthulpeton E100#^^^^(#^5)>#^^^^(#^5)>#^^^^(#^5)100 $$f_{\varphi(2,4,\varphi(2,4,\varphi(2,4,0)))}(100)$$ tetrastaculated hexacthulpeton E100(#^^^^#^6)4 $$f_{\varphi(2,4,\varphi(2,4,\varphi(2,4,\varphi(2,4,0))))}(100)$$ pentastaculated hexacthulpeton E100(#^^^^#^6)5 $$f_{\varphi(2,5,0)[5]}(100)$$ hexastaculated hexacthulpeton E100(#^^^^#^6)6 $$f_{\varphi(2,5,0)[6]}(100)$$ heptastaculated hexacthulpeton E100(#^^^^#^6)7 $$f_{\varphi(2,5,0)[7]}(100)$$ ogdastaculated hexacthulpeton E100(#^^^^#^6)8 $$f_{\varphi(2,5,0)[8]}(100)$$ ennastaculated hexacthulpeton E100(#^^^^#^6)9 $$f_{\varphi(2,5,0)[9]}(100)$$ dekastaculated hexacthulpeton E100(#^^^^#^6)10 $$f_{\varphi(2,5,0)[10]}(100)$$ hexacthulhexon E100(#^^^^#^6)100 $$f_{\varphi(2,5,0)}(100)$$ hexacthuliterhexon E100#^^^^(#^6)>#100 $$f_{\varphi(2,5,\omega)}(100)$$ godgahlah-turreted-hexacthulhexon E100#^^^^(#^6)>#^#100 $$f_{\varphi(2,5,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulhexon E100#^^^^(#^6)>#^^#100 $$f_{\varphi(2,5,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^#100 $$f_{\varphi(2,5,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^#100 $$f_{\varphi(2,5,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^##100 $$f_{\varphi(2,5,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^###100 $$f_{\varphi(2,5,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^####100 $$f_{\varphi(2,5,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^(#^5)100 $$f_{\varphi(2,5,\varphi(2,4,0))}(100)$$ dustaculated hexacthulhexon, hexacthulhexon-turreted-hexacthulhexon E100#^^^^(#^6)>#^^^^(#^6)100 $$f_{\varphi(2,5,\varphi(2,5,0))}(100)$$ tristaculated hexacthulhexon E100#^^^^(#^6)>#^^^^(#^6)>#^^^^(#^6)100 $$f_{\varphi(2,5,\varphi(2,5,\varphi(2,5,0)))}(100)$$ tetrastaculated hexacthulhexon E100(#^^^^#^7)4 $$f_{\varphi(2,5,\varphi(2,5,\varphi(2,5,\varphi(2,5,0))))}(100)$$ pentastaculated hexacthulhexon E100(#^^^^#^7)5 $$f_{\varphi(2,6,0)[5]}(100)$$ hexastaculated hexacthulhexon E100(#^^^^#^7)6 $$f_{\varphi(2,6,0)[6]}(100)$$ heptastaculated hexacthulhexon E100(#^^^^#^7)7 $$f_{\varphi(2,6,0)[7]}(100)$$ ogdastaculated hexacthulhexon E100(#^^^^#^7)8 $$f_{\varphi(2,6,0)[8]}(100)$$ ennastaculated hexacthulhexon E100(#^^^^#^7)9 $$f_{\varphi(2,6,0)[9]}(100)$$ dekastaculated hexacthulhexon E100(#^^^^#^7)10 $$f_{\varphi(2,6,0)[10]}(100)$$ hexacthulhepton E100(#^^^^#^7)100 $$f_{\varphi(2,6,0)}(100)$$ hexacthuliterhepton E100#^^^^(#^7)>#100 $$f_{\varphi(2,6,\omega)}(100)$$ godgahlah-turreted-hexacthulhepton E100#^^^^(#^7)>#^#100 $$f_{\varphi(2,6,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulhepton E100#^^^^(#^7)>#^^#100 $$f_{\varphi(2,6,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^#100 $$f_{\varphi(2,6,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^#100 $$f_{\varphi(2,6,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^##100 $$f_{\varphi(2,6,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^###100 $$f_{\varphi(2,6,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^####100 $$f_{\varphi(2,6,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^(#^5)100 $$f_{\varphi(2,6,\varphi(2,4,0))}(100)$$ hexacthulhexon-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^(#^6)100 $$f_{\varphi(2,6,\varphi(2,5,0))}(100)$$ dustaculated hexacthulhepton, hexacthulhepton-turreted-hexacthulhepton E100#^^^^(#^7)>#^^^^(#^7)100 $$f_{\varphi(2,6,\varphi(2,6,0))}(100)$$ tristaculated hexacthulhepton E100#^^^^(#^7)>#^^^^(#^7)>#^^^^(#^7)100 $$f_{\varphi(2,6,\varphi(2,6,\varphi(2,6,0)))}(100)$$ tetrastaculated hexacthulhepton E100(#^^^^#^8)4 $$f_{\varphi(2,6,\varphi(2,6,\varphi(2,6,\varphi(2,6,0))))}(100)$$ pentastaculated hexacthulhepton E100(#^^^^#^8)5 $$f_{\varphi(2,7,0)[5]}(100)$$ hexastaculated hexacthulhepton E100(#^^^^#^8)6 $$f_{\varphi(2,7,0)[6]}(100)$$ heptastaculated hexacthulhepton E100(#^^^^#^8)7 $$f_{\varphi(2,7,0)[7]}(100)$$ ogdastaculated hexacthulhepton E100(#^^^^#^8)8 $$f_{\varphi(2,7,0)[8]}(100)$$ ennastaculated hexacthulhepton E100(#^^^^#^8)9 $$f_{\varphi(2,7,0)[9]}(100)$$ dekastaculated hexacthulhepton E100(#^^^^#^8)10 $$f_{\varphi(2,7,0)[10]}(100)$$ hexacthul-ogdon E100(#^^^^#^8)100 $$f_{\varphi(2,7,0)}(100)$$ hexacthuliter-ogdon E100#^^^^(#^8)>#100 $$f_{\varphi(2,7,\omega)}(100)$$ godgahlah-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^#100 $$f_{\varphi(2,7,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^#100 $$f_{\varphi(2,7,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^#100 $$f_{\varphi(2,7,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^#100 $$f_{\varphi(2,7,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^##100 $$f_{\varphi(2,7,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^###100 $$f_{\varphi(2,7,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^####100 $$f_{\varphi(2,7,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^(#^5)100 $$f_{\varphi(2,7,\varphi(2,4,0))}(100)$$ hexacthulhexon-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^(#^6)100 $$f_{\varphi(2,7,\varphi(2,5,0))}(100)$$ hexacthulhepton-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^(#^7)100 $$f_{\varphi(2,7,\varphi(2,6,0))}(100)$$ dustaculated hexacthul-ogdon, hexacthul-ogdon-turreted-hexacthul-ogdon E100#^^^^(#^8)>#^^^^(#^8)100 $$f_{\varphi(2,7,\varphi(2,7,0))}(100)$$ tristaculated hexacthul-ogdon E100#^^^^(#^8)>#^^^^(#^8)>#^^^^(#^8)100 $$f_{\varphi(2,7,\varphi(2,7,\varphi(2,7,0)))}(100)$$ tetrastaculated hexacthul-ogdon E100(#^^^^#^9)4 $$f_{\varphi(2,7,\varphi(2,7,\varphi(2,7,\varphi(2,7,0))))}(100)$$ pentastaculated hexacthul-ogdon E100(#^^^^#^9)5 $$f_{\varphi(2,8,0)[5]}(100)$$ hexastaculated hexacthul-ogdon E100(#^^^^#^9)6 $$f_{\varphi(2,8,0)[6]}(100)$$ heptastaculated hexacthul-ogdon E100(#^^^^#^9)7 $$f_{\varphi(2,8,0)[7]}(100)$$ ogdastaculated hexacthul-ogdon E100(#^^^^#^9)8 $$f_{\varphi(2,8,0)[8]}(100)$$ ennastaculated hexacthul-ogdon E100(#^^^^#^9)9 $$f_{\varphi(2,8,0)[9]}(100)$$ dekastaculated hexacthul-ogdon E100(#^^^^#^9)10 $$f_{\varphi(2,8,0)[10]}(100)$$ hexacthulennon E100(#^^^^#^9)100 $$f_{\varphi(2,8,0)}(100)$$ hexacthuliterennon E100#^^^^(#^9)>#100 $$f_{\varphi(2,8,\omega)}(100)$$ godgahlah-turreted-hexacthulennon E100#^^^^(#^9)>#^#100 $$f_{\varphi(2,8,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthulennon E100#^^^^(#^9)>#^^#100 $$f_{\varphi(2,8,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthulennon E100#^^^^(#^9)>#^^^#100 $$f_{\varphi(2,8,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^#100 $$f_{\varphi(2,8,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^##100 $$f_{\varphi(2,8,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^###100 $$f_{\varphi(2,8,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^####100 $$f_{\varphi(2,8,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^(#^5)100 $$f_{\varphi(2,8,\varphi(2,4,0))}(100)$$ hexacthulhexon-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^(#^6)100 $$f_{\varphi(2,8,\varphi(2,5,0))}(100)$$ hexacthulhepton-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^(#^7)100 $$f_{\varphi(2,8,\varphi(2,6,0))}(100)$$ hexacthul-ogdon-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^(#^8)100 $$f_{\varphi(2,8,\varphi(2,7,0))}(100)$$ dustaculated hexacthulennon, hexacthulennon-turreted-hexacthulennon E100#^^^^(#^9)>#^^^^(#^9)100 $$f_{\varphi(2,8,\varphi(2,8,0))}(100)$$ tristaculated hexacthulennon E100#^^^^(#^9)>#^^^^(#^9)>#^^^^(#^9)100 $$f_{\varphi(2,8,\varphi(2,8,\varphi(2,8,0)))}(100)$$ tetrastaculated hexacthulennon E100(#^^^^#^10)4 $$f_{\varphi(2,8,\varphi(2,8,\varphi(2,8,\varphi(2,8,0))))}(100)$$ pentastaculated hexacthulennon E100(#^^^^#^10)5 $$f_{\varphi(2,9,0)[5]}(100)$$ hexastaculated hexacthulennon E100(#^^^^#^10)6 $$f_{\varphi(2,9,0)[6]}(100)$$ heptastaculated hexacthulennon E100(#^^^^#^10)7 $$f_{\varphi(2,9,0)[7]}(100)$$ ogdastaculated hexacthulennon E100(#^^^^#^10)8 $$f_{\varphi(2,9,0)[8]}(100)$$ ennastaculated hexacthulennon E100(#^^^^#^10)9 $$f_{\varphi(2,9,0)[9]}(100)$$ dekastaculated hexacthulennon E100(#^^^^#^10)10 $$f_{\varphi(2,9,0)[10]}(100)$$ hexacthuldekon E100(#^^^^#^10)100 $$f_{\varphi(2,9,0)}(100)$$ hexacthuliterdekon E100#^^^^(#^10)>#100 $$f_{\varphi(2,9,\omega)}(100)$$ godgahlah-turreted-hexacthuldekon E100#^^^^(#^10)>#^#100 $$f_{\varphi(2,9,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthuldekon E100#^^^^(#^10)>#^^#100 $$f_{\varphi(2,9,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^#100 $$f_{\varphi(2,9,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^#100 $$f_{\varphi(2,9,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^##100 $$f_{\varphi(2,9,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^###100 $$f_{\varphi(2,9,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^####100 $$f_{\varphi(2,9,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^5)100 $$f_{\varphi(2,9,\varphi(2,4,0))}(100)$$ hexacthulhexon-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^6)100 $$f_{\varphi(2,9,\varphi(2,5,0))}(100)$$ hexacthulhepton-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^7)100 $$f_{\varphi(2,9,\varphi(2,6,0))}(100)$$ hexacthul-ogdon-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^8)100 $$f_{\varphi(2,9,\varphi(2,7,0))}(100)$$ hexacthulennon-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^9)100 $$f_{\varphi(2,9,\varphi(2,8,0))}(100)$$ dustaculated hexacthuldekon, hexacthuldekon-turreted-hexacthuldekon E100#^^^^(#^10)>#^^^^(#^10)100 $$f_{\varphi(2,9,\varphi(2,9,0))}(100)$$ tristaculated hexacthuldekon E100#^^^^(#^10)>#^^^^(#^10)>#^^^^(#^10)100 $$f_{\varphi(2,9,\varphi(2,9,\varphi(2,9,0)))}(100)$$ tetrastaculated hexacthuldekon E100(#^^^^#^11)4 $$f_{\varphi(2,9,\varphi(2,9,\varphi(2,9,\varphi(2,9,0))))}(100)$$ pentastaculated hexacthuldekon E100(#^^^^#^11)5 $$f_{\varphi(2,10,0)[5]}(100)$$ hexastaculated hexacthuldekon E100(#^^^^#^11)6 $$f_{\varphi(2,10,0)[6]}(100)$$ heptastaculated hexacthuldekon E100(#^^^^#^11)7 $$f_{\varphi(2,10,0)[7]}(100)$$ ogdastaculated hexacthuldekon E100(#^^^^#^11)8 $$f_{\varphi(2,10,0)[8]}(100)$$ ennastaculated hexacthuldekon E100(#^^^^#^11)9 $$f_{\varphi(2,10,0)[9]}(100)$$ dekastaculated hexacthuldekon E100(#^^^^#^11)10 $$f_{\varphi(2,10,0)[10]}(100)$$ hexacthulhendekon E100(#^^^^#^11)100 $$f_{\varphi(2,10,0)}(100)$$ hexacthuldodekon E100(#^^^^#^12)100 $$f_{\varphi(2,11,0)}(100)$$ hexacthultredekon E100(#^^^^#^13)100 $$f_{\varphi(2,12,0)}(100)$$ hexacthulterdekon E100(#^^^^#^14)100 $$f_{\varphi(2,13,0)}(100)$$ hexacthulpedekon E100(#^^^^#^15)100 $$f_{\varphi(2,14,0)}(100)$$ hexacthul-exdekon E100(#^^^^#^16)100 $$f_{\varphi(2,15,0)}(100)$$ hexacthul-epdekon E100(#^^^^#^17)100 $$f_{\varphi(2,16,0)}(100)$$ hexacthul-ogdekon E100(#^^^^#^18)100 $$f_{\varphi(2,17,0)}(100)$$ hexacthul-enndekon E100(#^^^^#^19)100 $$f_{\varphi(2,18,0)}(100)$$ hexacthul-icoson E100(#^^^^#^20)100 $$f_{\varphi(2,19,0)}(100)$$ hexacthul-trianton E100(#^^^^#^30)100 $$f_{\varphi(2,29,0)}(100)$$ hexacthul-saranton E100(#^^^^#^40)100 $$f_{\varphi(2,39,0)}(100)$$ hexacthul-peninton E100(#^^^^#^50)100 $$f_{\varphi(2,49,0)}(100)$$ hexacthul-exinton E100(#^^^^#^60)100 $$f_{\varphi(2,59,0)}(100)$$ hexacthul-ebdominton E100(#^^^^#^70)100 $$f_{\varphi(2,69,0)}(100)$$ hexacthul-ogdonton E100(#^^^^#^80)100 $$f_{\varphi(2,79,0)}(100)$$ hexacthul-eneninton E100(#^^^^#^90)100 $$f_{\varphi(2,89,0)}(100)$$ hexacthul-enneneninton E100(#^^^^#^999)100 $$f_{\varphi(2,98,0)}(100)$$ hexacthultope, hexacthulhecton E100#^^^^#^#100 $$f_{\varphi(2,99,0)}(100)$$ grand hexacthulhecton E100(#^^^^#^100)100#2 $$f^2_{\varphi(2,99,0)}(100)$$ grand hexacthultope E100#^^^^#^#100#2 $$f^2_{\varphi(2,\omega,0)}(100)$$ hexacthuldeutertope E100(#^^^^#^#)^^^^#^#100 $$f_{\varphi(2,\omega,1)}(100)$$ hexacthultritotope E100((#^^^^#^#)^^^^#^#)^^^^#^#100 $$f_{\varphi(2,\omega,2)}(100)$$ hexacthultetertotope E100#^^^^(#^#)>#4 $$f_{\varphi(2,\omega,3)}(100)$$ hexacthulpeptotope E100#^^^^(#^#)>#5 $$f_{\varphi(2,\omega,4)}(100)$$ hexacthul-extotope E100#^^^^(#^#)>#6 $$f_{\varphi(2,\omega,5)}(100)$$ hexacthul-eptotope E100#^^^^(#^#)>#7 $$f_{\varphi(2,\omega,6)}(100)$$ hexacthul-ogdotope E100#^^^^(#^#)>#8 $$f_{\varphi(2,\omega,7)}(100)$$ hexacthul-entotope E100#^^^^(#^#)>#9 $$f_{\varphi(2,\omega,8)}(100)$$ hexacthul-dekatotope E100#^^^^(#^#)>#10 $$f_{\varphi(2,\omega,9)}(100)$$ hexacthulitertope E100#^^^^(#^#)>#100 $$f_{\varphi(2,\omega,\omega)}(100)$$ godgahlah-turreted-hexacthultope E100#^^^^(#^#)>#^#100 $$f_{\varphi(2,\omega,\omega^\omega)}(100)$$ tethrathoth-turreted-hexacthultope E100#^^^^(#^#)>#^^#100 $$f_{\varphi(2,\omega,\varepsilon_0)}(100)$$ pentacthulhum-turreted-hexacthultope E100#^^^^(#^#)>#^^^#100 $$f_{\varphi(2,\omega,\Gamma_0)}(100)$$ hexacthulhum-turreted-hexacthultope E100#^^^^(#^#)>#^^^^#100 $$f_{\varphi(2,\omega,\varphi(2,0,0))}(100)$$ hexacthulcross-turreted-hexacthultope E100#^^^^(#^#)>#^^^^##100 $$f_{\varphi(2,\omega,\varphi(2,1,0))}(100)$$ hexacthulcubor-turreted-hexacthultope E100#^^^^(#^#)>#^^^^###100 $$f_{\varphi(2,\omega,\varphi(2,2,0))}(100)$$ hexacthulteron-turreted-hexacthultope E100#^^^^(#^#)>#^^^^####100 $$f_{\varphi(2,\omega,\varphi(2,3,0))}(100)$$ hexacthulpeton-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^5)100 $$f_{\varphi(2,\omega,\varphi(2,4,0))}(100)$$ hexacthulhexon-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^6)100 $$f_{\varphi(2,\omega,\varphi(2,5,0))}(100)$$ hexacthulhepton-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^7)100 $$f_{\varphi(2,\omega,\varphi(2,6,0))}(100)$$ hexacthul-ogdon-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^8)100 $$f_{\varphi(2,\omega,\varphi(2,7,0))}(100)$$ hexacthulennon-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^9)100 $$f_{\varphi(2,\omega,\varphi(2,8,0))}(100)$$ hexacthuldekon-turreted-hexacthultope E100#^^^^(#^#)>#^^^^(#^10)100 $$f_{\varphi(2,\omega,\varphi(2,9,0))}(100)$$ dustaculated hexacthultope E100#^^^^(#^#)>#^^^^(#^#)100 $$f_{\varphi(2,\omega,\varphi(2,\omega,0))}(100)$$ tristaculated hexacthultope E100#^^^^(#^#)>#^^^^(#^#)>#^^^^(#^#)100 $$f_{\varphi(2,\omega,\varphi(2,\omega,\varphi(2,\omega,0)))}(100)$$ tetrastaculated hexacthultope E100#^^^^(#^#*#)4 $$f_{\varphi(2,\omega,\varphi(2,\omega,\varphi(2,\omega,\varphi(2,0,0))))}(100)$$ pentastaculated hexacthultope E100#^^^^(#^#*#)5 $$f_{\varphi(2,\omega+1,0)[5]}(100)$$ hexastaculated hexacthultope E100#^^^^(#^#*#)6 $$f_{\varphi(2,\omega+1,0)[6]}(100)$$ heptastaculated hexacthultope E100#^^^^(#^#*#)7 $$f_{\varphi(2,\omega+1,0)[7]}(100)$$ odastaculated hexacthultope E100#^^^^(#^#*#)8 $$f_{\varphi(2,\omega+1,0)[8]}(100)$$ ennastaculated hexacthultope E100#^^^^(#^#*#)9 $$f_{\varphi(2,\omega+1,0)[9]}(100)$$ dekastaculated hexacthultope E100#^^^^(#^#*#)10 $$f_{\varphi(2,\omega+1,0)[10]}(100)$$ hexacthul-godgahlah-by-hyperia-to E100#^^^^(#^#*#)100 $$f_{\varphi(2,\omega+1,0)}(100)$$ hexacthultopodeus E100#^^^^(#^#*#^#)100 $$f_{\varphi(2,\omega2,0)}(100)$$ hexacthultopotruce E100#^^^^(#^#*#^#*#^#)100 $$f_{\varphi(2,\omega3,0)}(100)$$ hexacthultopoquad E100#^^^^#^##4 $$f_{\varphi(2,\omega4,0)}(100)$$ hexacthultopoquid E100#^^^^#^##5 $$f_{\varphi(2,\omega5,0)}(100)$$ hexacthultoposid E100#^^^^#^##4 $$f_{\varphi(2,\omega6,0)}(100)$$ hexacthultoposeptuce E100#^^^^#^##7 $$f_{\varphi(2,\omega7,0)}(100)$$ hexacthultopo-octuce E100#^^^^#^##8 $$f_{\varphi(2,\omega8,0)}(100)$$ hexacthultopononuce E100#^^^^#^##9 $$f_{\varphi(2,\omega9,0)}(100)$$ hexacthultopodecuce E100#^^^^#^##10 $$f_{\varphi(2,\omega10,0)}(100)$$ hexacthul-lattitope E100#^^^^#^##100 $$f_{\varphi(2,\omega^2,0)}(100)$$ hexacthulcubitope E100#^^^^#^###100 $$f_{\varphi(2,\omega^3,0)}(100)$$ hexacthulquarticutope E100#^^^^#^####100 $$f_{\varphi(2,\omega^4,0)}(100)$$ hexacthulquinticutope E100#^^^^(#^#^5)100 $$f_{\varphi(2,\omega^5,0)}(100)$$ hexacthulsexticutope E100#^^^^(#^#^6)100 $$f_{\varphi(2,\omega^6,0)}(100)$$ hexacthulsepticutope E100#^^^^(#^#^7)100 $$f_{\varphi(2,\omega^7,0)}(100)$$ hexacthulocticutope E100#^^^^(#^#^8)100 $$f_{\varphi(2,\omega^8,0)}(100)$$ hexacthulnonicutope E100#^^^^(#^#^9)100 $$f_{\varphi(2,\omega^9,0)}(100)$$ hexacthuldecicutope E100#^^^^(#^#^10)100 $$f_{\varphi(2,\omega^{10},0)}(100)$$ hexacthulo-godgathor E100#^^^^#^#^#100 $$f_{\varphi(2,\omega^\omega,0)}(100)$$ hexacthulo-godtothol E100#^^^^#^#^#^#100 $$f_{\varphi(2,\omega^{\omega^\omega},0)}(100)$$ hexacthulo-tethrathoth E100#^^^^#^^#100 $$f_{\varphi(2,\varepsilon_0,0)}(100)$$ hexacthulo-pentacthulhum E100#^^^^#^^^#100 $$f_{\varphi(2,\Gamma_0,0)}(100)$$ hexacthularxitri E100#^^^^#^^^^#100 $$f_{\varphi(2,\varphi(2,0,0),0)}(100)$$ joe pellinger 203^431,1122,937#^^^^########^^^^######>#^#203,431,112,937 $$f_{\varphi(2,\varphi(2,5,\omega^\omega),0)}(203,431,112,937)$$ grand joe pellinger 203^431,1122,937#^^^^########^^^^######>#^#203,431,112,937#2 $$f^2_{\varphi(2,\varphi(2,5,\omega^\omega),0)}(203,431,112,937)$$ hexacthularxitet E100#^^^^^#4 $$f_{\varphi(2,\varphi(2,\varphi(2,0,0),0),0)}(100)$$ hexacthularxipent E100#^^^^^#5 $$f_{\varphi(3,0,0)[5]}(100)$$ hexacthularxihex E100#^^^^^#6 $$f_{\varphi(3,0,0)[6]}(100)$$ hexacthularxihept E100#^^^^^#7 $$f_{\varphi(3,0,0)[7]}(100)$$ hexacthularxi-ogd E100#^^^^^#8 $$f_{\varphi(3,0,0)[8]}(100)$$ hexacthularxi-enn E100#^^^^^#9 $$f_{\varphi(3,0,0)[9]}(100)$$ hexacthularxideck E100#^^^^^#10 $$f_{\varphi(3,0,0)[10]}(100)$$ hexacthularxicose E100#^^^^^#20 $$f_{\varphi(3,0,0)[20]}(100)$$ hexacthularxitriane E100#^^^^^#30 $$f_{\varphi(3,0,0)[30]}(100)$$ hexacthularxisarane E100#^^^^^#40 $$f_{\varphi(3,0,0)[40]}(100)$$ hexacthularxipenine, hecacthularxigole E100#^^^^^#50 $$f_{\varphi(3,0,0)[50]}(100)$$ hexacthularxi-exine E100#^^^^^#60 $$f_{\varphi(3,0,0)[60]}(100)$$ hexacthularxi-ebdomine E100#^^^^^#70 $$f_{\varphi(3,0,0)[70]}(100)$$ hexacthularxi-ogdone E100#^^^^^#80 $$f_{\varphi(3,0,0)[80]}(100)$$ hexacthularxi-enenine E100#^^^^^#90 $$f_{\varphi(3,0,0)[90]}(100)$$ hexacthularxihect E100#^^^^^#100 $$f_{\varphi(3,0,0)}(100)$$ hexacthularxigigas E100#^^^^^#500 $$f_{\varphi(3,0,0)}(500)$$ hexacthularxichill E100#^^^^^#1000 $$f_{\varphi(3,0,0)}(1000)$$ hexacthularximyr E100#^^^^^#10,000 $$f_{\varphi(3,0,0)}(10,000)$$ hexacthularxigong E100#^^^^^#100,000 $$f_{\varphi(3,0,0)}(100,000)$$ hexacthularxi-octad E100#^^^^^#100,000,000 $$f_{\varphi(3,0,0)}(10^8)$$ hexacthularxi-sedeniad E100#^^^^^#10,000,000,000,000,000 $$f_{\varphi(3,0,0)}(10^{16})$$ hexacthularxi-googol E100#^^^^^#(E100) $$f_{\varphi(3,0,0)}(10^{100})$$ hexacthularxi-grangol E100#^^^^^#(E100#100) $$f_{\varphi(3,0,0)}(f_3(100))$$ hexacthularxi-godgahlah E100#^^^^^#(E100#^#100) $$f_{\varphi(3,0,0)}(f_{\omega^\omega}(100))$$ hexacthularxi-tethrathoth E100#^^^^^#(E100#^^#100) $$f_{\varphi(3,0,0)}(f_{\varepsilon_0}(100))$$ hexacthularxi-pentacthulhum E100#^^^^^#(E100#^^^#100) $$f_{\varphi(3,0,0)}(f_{\Gamma_0}(100))$$ hexacthularxi-hexacthulhum E100#^^^^^#(E100#^^^^#100) $$f_{\varphi(3,0,0)}(f_{\varphi(2,0,0)}(100))$$ hexacthularxi-hexacthularxitri E100#^^^^^#(E100#^^^^#^^^^#100) $$f_{\varphi(3,0,0)}(f_{\varphi(2,\varphi(2,0,0),0)}(100))$$ hexacthularxi-hexacthularxitet E100#^^^^^#(E100#^^^^^#4) $$f_{\varphi(3,0,0)}(f_{\varphi(2,\varphi(2,\varphi(2,0,0),0),0)}(100))$$ hexacthularxi-hexacthularxihect E100#^^^^^#(E100#^^^^^#100) $$f^2_{\varphi(3,0,0)}(100)$$ hexacthularxi-hexacthularxi-hexacthularxihect E100#^^^^^#(E100#^^^^^#(E100#^^^^^#100)) $$f^3_{\varphi(3,0,0)}(100)$$ hexacthularxi-hexacthularxi-hexacthularxi-hexacthularxihect E100#^^^^^#(E100#^^^^^#(E100#^^^^^#(E100#^^^^^#100))) $$f^4_{\varphi(3,0,0)}(100)$$ hexacthularxi-hexacthularxi-hexacthularxi-hexacthularxihect E100#{5}#(E100#{5}#(E100#{5}#(E100#{5}#(E100#{5}#100)))) $$f^5_{\varphi(3,0,0)}(100)$$