The Hardy-Ramanujan Number is 1,729.[1] G. H. Hardy comments about this number:

"Once, in the taxi from London, Hardy noticed its number, 1729. He must have thought about it a little because he entered the room where Ramanujan lay in bed and, with scarcely a hello, blurted out his disappointment with it. It was, he declared, 'rather a dull number,' adding that he hoped that wasn't a bad omen. 'No, Hardy,' said Ramanujan, 'it is a very interesting number. It is the smallest number expressible as the sum of two cubes in two different ways.' "

This is because 1,729 = 103 + 93 = 123 + 13.

Ta(n), the nth taxicab number, is the smallest number expressible as the sum of two cubes in n different ways.

Sources

External links

Community content is available under CC-BY-SA unless otherwise noted.