## FANDOM

10,504 Pages

The gwgoogol is equal to k$$\cdot$$googol using hypermathematics, where k is equal to $$10^{198}$$ using normal mathemathics.[1] It can also be defined as $$\underbrace{\text{ggg...ggg}}_{100}\text{oogol}$$. In normal mathematics, it is exactly $$\sum^{10^{198}-1}_{i=0}10^{100+101i}=10^{100}\left(\frac{10^{101\cdot10^{198}}-1}{10^{101}-1}\right)$$. It is therefore somewhat bigger than $$10^{101\cdot10^{198}-1}$$ using normal mathematics.

## Approximations

Notation Lower bound Upper bound
Arrow notation $$755\uparrow709\uparrow70$$ $$(10\uparrow101)\uparrow(10\uparrow198)$$
Down-arrow notation $$148\downarrow\downarrow93$$ $$15\downarrow\downarrow171$$
Steinhaus-Moser Notation 99[3][3] 100[3][3]
Copy notation $$10^{100}[10^{198}]$$
H* function H(33H(65)) H(34H(65))
Taro's multivariable Ackermann function A(3,A(3,663)) A(3,A(3,664))
Pound-Star Notation #*((1))*((42))*7 #*((1))*((43))*7
BEAF {755,{709,70}} {{10,101},{10,198}}
Hyper-E notation E[148]92#2 E[15]170#2
Bashicu matrix system (0)(1)[661] (0)(1)[662]
Hyperfactorial array notation (119!)! (120!)!
Fast-growing hierarchy $$f_2(f_2(656))$$ $$f_2(f_2(657))$$
Hardy hierarchy $$H_{\omega^22}(656)$$ $$H_{\omega^22}(657)$$
Slow-growing hierarchy $$g_{\omega^{\omega^{\omega^22}}}(10)$$ $$g_{\omega^{\omega^{\omega^22}2}}(10)$$

## Sources

1. A googol is a tiny dot