11,327
pages

Gulgolduhexigong is equal to E100000#100000#100000#100000#100000#100000#3 = E100000#100000#100000#100000#100000#(E100000#100000#100000#100000#100000#100000#2) = E100000#100000#100000#100000#100000#gulgolhexigong, using Hyper-E notation.[1] The term was coined by Sbiis Saibian.

## Etymology

The name "gulgolhexigong" can be separated into 4 parts, "gulgol" , "du" (means two), "hex" (which means En#n#n#n#n#n#2) & "gong", means multiplying base value by 1,000 times.

## Approximations in other notations

Notation Lower bound Upper bound
Arrow notation $$100 \uparrow^6 100 \uparrow^6 100 \uparrow^6 100\,001$$ $$100 \uparrow^6 100 \uparrow^6 100 \uparrow^6 100\,002$$
Chained arrow notation $$100 \rightarrow (100 \rightarrow (100 \rightarrow 100\,001 \rightarrow 6) \rightarrow 6) \rightarrow 6$$ $$100 \rightarrow (100 \rightarrow (100 \rightarrow 100\,002 \rightarrow 6) \rightarrow 6) \rightarrow 6$$
Hyperfactorial array notation $$((100\,002!5)!5)!5$$ $$((100\,003!5)!5)!5$$
BEAF & Bird's array notation $$\{100,\{100,\{100,100001,6\},6\},6\}$$ $$\{100,\{100,\{100,100001,6\},6\},6\}$$
Fast-growing hierarchy $$f_7(f_7(f_7(100\,000)))$$ $$f_7(f_7(f_7(100\,001)))$$
Hardy hierarchy $$H_{\omega^73}(100\,000)$$ $$H_{\omega^73}(100\,001)$$
Slow-growing hierarchy $$g_{\varphi(5,\varphi(5,\varphi(5,0)))}(100\,000)$$ $$g_{\varphi(5,\varphi(5,\varphi(5,0)))}(100\,001)$$

## Sources

1. Saibian, Sbiis. Hyper-E Numbers. Retrieved 2015-04-23.