The greegolthra-threxitris is equal to E100##100##100#100#100#2 using Extended Hyper-E Notation.[1] The term was coined by Sbiis Saibian. This number is comparable to tetratri.

Approximations in other notations

Notation Lower bound Upper bound
Chained arrow notation \(100 \rightarrow 100 \rightarrow 100 \rightarrow 3 \rightarrow 4\) \(100 \rightarrow 101 \rightarrow 100 \rightarrow 3 \rightarrow 4\)
BEAF \(\{100,3,3,3\}\) \(\{101,3,3,3\}\)
Taro's multivariable Ackermann function A(1,0,0,3) A(1,0,0,4)
Bird's array notation \(\{100,3,3,3\}\) \(\{101,3,3,3\}\)
Fast-growing hierarchy \(f_{\omega\times 2}^2(100)\) \(f_{\omega\times 2}^2(101)\)
Hardy hierarchy \(H_{\omega^{\omega \times 2}\times 2}(100)\) \(H_{\omega^{\omega \times 2}\times 2}(101)\)
Slow-growing hierarchy \(g_{\varphi(2,1,\varphi(2,1,0))}(100)\) \(g_{\varphi(2,1,\varphi(2,1,0))}(101)\)


  1. Saibian, Sbiis. Extended Hyper-E NumbersOne to Infinity. Retrieved 2016-08-15.

See also

Community content is available under CC-BY-SA unless otherwise noted.