Advertisement
11,329
pages

Great Bigrand Destruquaxul is equal to (...((200![200([200([200([200(200)200(200)200])200(200)200])200(200)200])200(200)200])![200([200([200([200(200)200(200)200])200(200)200])200(200)200])200(200)200])...)![200([200([200([200(200)200(200)200])200(200)200])200(200)200])200(200)200] ( where there are Great Grand Destruquaxul parentheses ) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "great" and the number "Bigrand Destruquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg200[1\neg200[1\neg200[1\neg202]200 \\ [1\neg202]200]200[1\neg202]200]200[1\neg202]200]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/200[1[1/200[1[1/200[1[1/201\sim2]200 \\ [1/201\sim2]200]2\sim2]200[1/201\sim2]200]2\sim2] \\ 200[1/201\sim2]200]2\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+200}^2 \\ (f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}(200))$$

where $$\alpha=\Omega^{\Omega^{200}}199+199$$

Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)\times(\omega^{200}2+\omega^{199})}(200)$$

where $$\alpha=\Omega^{\Omega^{200}}199+199$$

Advertisement