11,329
pages

Great Bigrand Destrubixul is equal to (...((200![200([200(200)200(200)200])200(200)200])![200([200(200)200(200)200])200(200)200])...)![200([200(200)200(200)200])200(200)200] (where there are Great Grand Megadestrubixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "great" and the number "Bigrand Destrubixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg200[1\neg202]200[1\neg202]200]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/200[1[1/201\sim2]200[1/201\sim2]200] \\ 2\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199)+199}}\times(\Omega^{\Omega^{200}}199+199))+200}^2 \\ (f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199)+199}}\times(\Omega^{\Omega^{200}}199+199))+199}(200))$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199)+199}}\times(\Omega^{\Omega^{200}}199+199))\times(\omega^{200}2+\omega^{199})}(200)$$