Name of number
| Hyper-E Notation (definition)
| Scientific notation (exact value)
| Pronunciation
|
greagol
| E100#100#100
| \(\left.\begin{matrix}\underbrace{10^{...^{10^{100}}}} \\ \underbrace{\quad\;\; \vdots \quad\;\;} \\ \underbrace{10^{...^{10^{100}}}} \\ 100\quad 10's \end{matrix} \right \} \text{100 lower braces}\)
|
|
grangolthrex
| E100#100#1#2 = E100#100#grangol
| \(\left. \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \underbrace{10^{10^{...{^{10^{100}}}}}}_{100\quad 10's}\)
|
|
grangoldexithrex
| E100#100#2#2 = E100#100#grangoldex
| \(\left. \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \underbrace{10^{10^{...{^{10^{100}}}}}}_{\underbrace{10^{10^{...{^{10^{100}}}}}}_{100\quad 10's}}\)
|
|
grangoldudexithrex
| E100#100#3#2 = E100#100#grangoldudex
| \(\left. \left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\& & 100\quad 10's \end{matrix} \right \} \text {3 lower braces}\)
|
|
greagolthrex
| E100#100#100#2 = E100#100#(E100#100#100) = E100#100#greagol
| \(\left. \left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \text {100 lower braces}\)
|
|
grangolduthrex
| E100#100#1#3 = E100#100#grangol#2
| \(\left. \left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \underbrace{10^{10^{...{^{10^{100}}}}}}_{100\quad 10's}\)
|
|
grangoldexiduthrex
| E100#100#2#3 = E100#100#grangoldex#2
| \(\left. \left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \underbrace{10^{10^{...{^{10^{100}}}}}}_{\underbrace{10^{10^{...{^{10^{100}}}}}}_{100\quad 10's}}\)
|
|
grangoldudexiduthrex
| E100#100#3#3 = E100#100#grangoldudex#2
| \(\left. \left.\left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}} \\&&\underbrace{10^{10^{...{^{10^{100}}}}}} \\&&\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \text {3 lower braces}\)
|
|
greagolduthrex
| E100#100#100#3 = E100#100#(E100#100#100#2) = E100#100#greagolthrex
| \(\left. \left.\left.\begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \begin{matrix} &&\underbrace{10^{10^{...{^{10^{100}}}}}}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & \underbrace{\quad \;\; \vdots \quad\;\;}\\ & &\underbrace{10^{10^{...{^{10^{100}}}}}} \\ & & 100\quad 10's \end{matrix} \right \} \text {100 lower braces}\)
|
|
Name of number
| Hyper-E Notation (definition)
| Arrow notation (approximation)
| Pronunciation
|
grangoltrithrex
| E100#100#1#4 = E100#100#grangol#3
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^2(101))))\)
|
|
grangoldexitrithrex
| E100#100#2#4 = E100#100#grangoldex#3
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 3)))\)
|
|
grangoldudexitrithrex
| E100#100#3#4 = E100#100#grangoldudex#3
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 4)))\)
|
|
greagoltrithrex
| E100#100#100#4
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 101)))\)
|
|
grangolquadrithrex
| E100#100#1#5 = E100#100#grangol#4
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^2(101)))))\)
|
|
grangoldexiquadrithrex
| E100#100#2#5 = E100#100#grangoldex#4
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 3))))\)
|
|
grangoldudexiquadrithrex
| E100#100#3#5 = E100#100#grangoldudex#4
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 4))))\)
|
|
greagolquadrithrex
| E100#100#100#5
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 101))))\)
|
|
grangolquintithrex
| E100#100#1#6 = E100#100#grangol#5
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^2(101))))))\)
|
|
grangoldexiquintithrex
| E100#100#2#6 = E100#100#grangoldex#5
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 3)))))\)
|
|
grangoldudexiquintithrex
| E100#100#3#6 = E100#100#grangoldudex#5
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 4)))))\)
|
|
greagolquintithrex
| E100#100#100#6
| \(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3(10\uparrow^3 101)))))\)
|
|
greagolsextithrex
| E100#100#100#7
| \(10\uparrow^4 8\)
|
|
greagolseptithrex
| E100#100#100#8
| \(10\uparrow^4 9\)
|
|
greagoloctithrex
| E100#100#100#9
| \(10\uparrow^4 10\)
|
|
greagolnonithrex
| E100#100#100#10
| \(10\uparrow^4 11\)
|
|
greagoldecithrex
| E100#100#100#11
| \(10\uparrow^4 12\)
|
|
greagolthrexichime
| E1000#1000#1000#2
| \(10\uparrow^3 (10\uparrow^3 (1001))\)
|
|
greagolduthrexichime
| E1000#1000#1000#3
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (1001)))\)
|
|
greagoltrithrexichime
| E1000#1000#1000#4
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (1001))))\)
|
|
greagolquadrithrexichime
| E1000#1000#1000#5
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (1001)))))\)
|
|
greagolquintithrexichime
| E1000#1000#1000#6
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (1001))))))\)
|
|
greagoltoll
| E10,000#10,000#10,000
| \(10\uparrow^3 (10^4)\)
|
|
greagolthrexitoll
| E10,000#10,000#10,000#2
| \(10\uparrow^3 (10\uparrow^3 (10^4))\)
|
|
greagolduthrexitoll
| E10,000#10,000#10,000#3
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^4)))\)
|
|
greagoltrithrexitoll
| E10,000#10,000#10,000#4
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^4)))\)
|
|
greagolquadrithrexitoll
| E10,000#10,000#10,000#5
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^4))))\)
|
|
greagolquintithrexitoll
| E10,000#10,000#10,000#6
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^4)))))\)
|
|
greagolgong
| E100,000#100,000#100,000
| \(10\uparrow^3 (10^5)\)
|
|
greagolthrexigong
| E100,000#100,000#100,000#2
| \(10\uparrow^3 (10\uparrow^3 (10^5))\)
|
|
greagolduthrexigong
| E100,000#100,000#100,000#3
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^5)))\)
|
|
greagoltrithrexigong
| E100,000#100,000#100,000#4
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^5))))\)
|
|
greagolquadrithrexigong
| E100,000#100,000#100,000#5
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^5)))))\)
|
|
greagolquintithrexigong
| E100,000#100,000#100,000#6
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^5))))))\)
|
|
greagolbong
| E100,000,000#100,000,000#100,000,000
| \(10\uparrow^3 (10^8)\)
|
|
greagolthrexibong
| E100,000,000#100,000,000#100,000,000#2
| \(10\uparrow^3 (10\uparrow^3 (10^8))\)
|
|
greagolduthrexibong
| E100,000,000#100,000,000#100,000,000#3
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^8)))\)
|
|
greagolthrong
| E100,000,000,000#100,000,000,000#100,000,000,000
| \(10\uparrow^3 (10^{11})\)
|
|
greagolthrexithrong
| E100,000,000,000#100,000,000,000#100,000,000,000#2
| \(10\uparrow^3 (10\uparrow^3 (10^{11}))\)
|
|
greagolduthrexithrong
| E100,000,000,000#100,000,000,000#100,000,000,000#3
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^{11})))\)
|
|
gaggolchime
| E1#1#1000
| \(10\uparrow^3 1000\)
|
|
gaggoltoll
| E1#1#10,000
| \(10\uparrow^3 10000\)
|
|
gaggolgong
| E1#1#100,000
| \(10\uparrow^3 100000\)
|
|
gaggolbong
| E1#1#100,000,000
| \(10\uparrow^3 10^8\)
|
|
gaggolthrong
| E1#1#100,000,000,000
| \(10\uparrow^3 10^{11}\)
|
|
googolthrex
| E100#1#1#2 = E100#1#googol
| \(10\uparrow^3 10^{100}\)
|
|
googolplexithrex
| E100#2#1#2 = E100#2#googolplex
| \(10\uparrow^3 10^{10^{10^{100}}}\)
|
|
googoldexithrex
| E100#1#2#2 = E100#1#(E100#1#2)
| \(10\uparrow^3 (10\uparrow^2 (10^{100}))\)
|
|
greagolplex
| E(E100#100#100)
| \(10\uparrow (10\uparrow^3 (101))\)
|
|
greagoldex
| E100#(E100#100#100) = E100#100#101
| \(10\uparrow^2 (10\uparrow^3 (101))\)
|
|
ecetonthrex
| E303#1#1#2 = E303#1#(E303) = E303#1#centillion
| \(10\uparrow^3 (10^{303})\)
|
|
ecetonduthrex
| E303#1#1#3 = E303#1#ecetonthrex
| \(10\uparrow^3 (10\uparrow^3 (10^{303}))\)
|
|
ecetontrithrex
| E303#1#1#4
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^{303})))\)
|
|
ecetonquadrithrex
| E303#1#1#5
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^{303}))))\)
|
|
ecetonquintithrex
| E303#1#1#6
| \(10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10\uparrow^3 (10^{303})))))\)
|
|
tria-petaxis
| E1#1#1#3 = E1#1#deka-taxis
| \(10\uparrow^4 3\)
|
|
tetra-petaxis
| E1#1#1#4 = E1#1#tria-petaxis
| \(10\uparrow^4 4\)
|
|
penta-petaxis
| E1#1#1#5 = E1#1#tetra-petaxis
| \(10\uparrow^4 5\)
|
|
hexa-petaxis
| E1#1#1#6 = E1#1#penta-petaxis
| \(10\uparrow^4 6\)
|
|
hepta-petaxis
| E1#1#1#7 = E1#1#hexa-petaxis
| \(10\uparrow^4 7\)
|
|
octa-petaxis
| E1#1#1#8 = E1#1#hepta-petaxis
| \(10\uparrow^4 8\)
|
|
enna-petaxis
| E1#1#1#9 = E1#1#octa-petaxis
| \(10\uparrow^4 9\)
|
|
deka-petaxis
| E1#1#1#10 = E1#1#enna-petaxis
| \(10\uparrow^4 10\)
|
|
hecta-petaxis
| E1#1#1#100
| \(10\uparrow^4 100\)
|
|
chilia-petaxis
| E1#1#1#1000
| \(10\uparrow^4 1000\)
|
|
myria-petaxis
| E1#1#1#10,000
| \(10\uparrow^4 10000\)
|
|
Parts of names
| Meaning
| Pronunciation
|
tria
| 3
|
|
tetra
| 4
|
|
penta
| 5
|
|
hexa
| 6
|
|
hepta
| 7
|
|
octa
| 8
|
|
enna
| 9
|
|
deka
| 10
|
|
hecta
| 100
|
|
chilia
| 1000
|
|
myria
| 10000
|
|
ding
| multiply the base value by 5
|
|
chime
| multiply the base value by 10
|
|
bell
| multiply the base value by 50
|
|
toll
| multiply the base value by 100
|
|
gong
| multiply the base value by 1000
|
|
bong
| multiply the base value by \(10^6\)
|
|
throng
| multiply the base value by \(10^9\)
|
|
gandingan
| multiply the base value by \(10^{12}\)
|
|