10,965 Pages

The grand teratetrofaxul is equal to (((...(((200!2)!2)!2)!2)...)!2 (with teratetrofaxul ()'s) in Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "grand" and the number "teratetrofaxul".

### Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm{E}10\#10\#197\#(\textrm{E}10\#10\#197\#5)\#2$$
Up-arrow notation $$10 \uparrow\uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 198$$
Chained arrow notation $$10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow 198 \rightarrow 3) \rightarrow 3) \rightarrow 3) \rightarrow 3) \rightarrow 3)\rightarrow 4$$
BEAF $$\{10,\{10,\{10,\{10,\{10,\{10,198,3\},3\},3\},3\},3\},4\}$$
Fast-growing hierarchy

$$f_5(f_4(f_4(f_4(f_4(f_4(200))))))$$

Hardy hierarchy $$H_{\omega^5+(\omega^4)5}(200)$$
Slow-growing hierarchy

$$g_{\eta_{\zeta_{\zeta_{\zeta_{\zeta_{\zeta_{0}}}}}}}(200)$$