10,965 Pages

Grand terahyperfaxul is equal to $$a_\text{terahyperfaxul}$$, where $$a_n$$ = $$a_{n-1}![1]$$ and $$a_0 = 200![1]$$, using Hyperfactorial Array Notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "grand" and the number "terahyperfaxul".

### Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm E10\#\#201\#(\textrm E10\#\#201\#5)\#2$$
Chained arrow notation $$10 \rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow (10\rightarrow 198 \rightarrow 201))))) \rightarrow 2$$
BEAF $$\{10,\{10,198,\{10,198,\{10,198,\{10,198,\{10,198,201\}\}\}\}\},1,2\}$$
Fast-growing hierarchy $$f_{\omega+1}(f_{\omega}(f_{\omega}(f_{\omega}(f_{\omega}(f_{\omega}(202))))))$$
Hardy hierarchy $$H_{\omega^{\omega+1}+\omega^{\omega}5}(202)$$
Slow-growing hierarchy (using this system of fundamental sequences) $$g_{\varphi(1,0,\varphi(\varphi(\varphi(\varphi(\varphi(200,0),0),0),0),0))}(200)$$
$$=g_{\Gamma_{\varphi(\varphi(\varphi(\varphi(\varphi(200,0),0),0),0),0)}}(200)$$