11,329
pages

Grand teraexpofaxul is equal to ((...(200!1)!1...)!1)!1 (with teraexpofaxul (...)'s) in Hyperfactorial array notation.[1] The term was coined by Lawrence Hollom.

## Etymology

The name of this number is based on the word "grand-" and the number "teraexpofaxul".

## Approximations in other notations

Notation Approximation
Hyper-E notation $$\textrm E10\#197\#(\textrm E10\#197\#5)\#2$$
Up-arrow notation $$10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 10 \uparrow\uparrow 198$$
Chained arrow notation

$$10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow (10 \rightarrow198 \rightarrow 2)\rightarrow 2) \rightarrow 2) \rightarrow 2) \rightarrow 2) \rightarrow 3$$

BEAF $$\{10,\{10,\{10,\{10,\{10,\{10,198,2\},2\},2\},2\},2\},3\}$$
Fast-growing hierarchy $$f_4(f_3(f_3(f_3(f_3(f_3(200))))))$$
Hardy hierarchy

$$H_{{\omega^4}+{\omega^3}5}(200)$$

Slow-growing hierarchy $$g_{\zeta_{\epsilon_{\epsilon_{\epsilon_{\epsilon_{\epsilon_{0}}}}}}}(200)$$