Grand Teragiaxul is equal to (...((200![200])![200])![200]...)![200] (with teragiaxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

Etymology

The name of this number is based on the word "grand" and the number "Teragiaxul".

Approximations in other notations

Notation Approximation
Hyper-E notation \(\textrm E200\#\#200\#\#200\#\textrm E200\#\#200\#\#200\#5\)
Chained arrow notation \(200\rightarrow200\rightarrow(200\rightarrow200\rightarrow6\rightarrow201)\rightarrow201\)
BEAF \(\{200,\{200,6,200,2\},200,2\}\)
Fast-growing hierarchy \(f_{\omega+200}(f_{\omega+199}^5(200))\)
Hardy hierarchy \(H_{\omega^{\omega+200}+\omega^{\omega+199}5}(200)\)
Slow-growing hierarchy (using this system of fundamental sequences) \(g_{\varphi(1,199,\varphi(1,199,0))}(5)\)

Sources

See also


Giaxul group: Giaxul · Kilogiaxul · Megagiaxul · Gigagiaxul · Teragiaxul · Petagiaxul · Exagiaxul · Grand Giaxul · Grand Kilogiaxul · Grand Megagiaxul · Grand Gigagiaxul · Grand Teragiaxul · Grand Petagiaxul · Grand Exagiaxul · Bigrand Giaxul · Bigrand Kilogiaxul · Bigrand Megagiaxul · Trigrand Giaxul · Trigrand Kilogiaxul · Trigrand Megagiaxul · Quadgrand Giaxul · Quintgrand Giaxul
Giabixul group: Giabixul · Kilogiabixul · Megagiabixul · Gigagiabixul · Grand Giabixul · Grand Kilogiabixul · Grand Megagiabixul · Grand Gigagiabixul · Bigrand Giabixul · Trigrand Giabixul
Giatrixul group: Giatrixul · Kilogiatrixul · Megagiatrixul · Gigagiatrixul · Grand Giatrixul · Grand Kilogiatrixul · Grand Megagiatrixul · Grand Gigagiatrixul · Bigrand Giatrixul · Trigrand Giatrixul
Giaquaxul group: Giaquaxul · Kilogiaquaxul · Megagiaquaxul · Gigagiaquaxul · Grand Giaquaxul · Grand Kilogiaquaxul · Grand Megagiaquaxul · Grand Gigagiaquaxul · Bigrand Giaquaxul · Trigrand Giaquaxul
Community content is available under CC-BY-SA unless otherwise noted.