11,329
pages

The Grand Megahugebixul is equal to ((...((200![200(1)200(1)200])![200(1)200(1)200])![200(1)200(1)200]...)![200(1)200(1)200])![200(1)200(1)200] (with Megahugebixul parentheses) using Hyperfactorial array notation. The number was coined by Lawrence Hollom.[1]

## Etymology

The name of this number is based on the word "grand" and the number "Megahugebixul".

## Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,4,201[1[1\neg3]200[1\neg3]200]2\} \\ ,201[1[1\neg3]200[1\neg3]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,4,201[1[1/2\sim2]200[1/2\sim2]200]2\} \\ ,201[1[1/2\sim2]200[1/2\sim2]200]2\}$$
BEAF $$\{200,\{200,4,201(\{X,\{X,199X,1,3\}+199X,1,2\})2\} \\ ,201(\{X,\{X,199X,1,3\}+199X,1,2\})2\}$$[2]
Fast-growing hierarchy (with this system of fundamental sequences) $$f_{\Gamma_{\varphi(2,0,198)+199}+200}(f_{\Gamma_{\varphi(2,0,198)+199}+199}^3(200))$$
Hardy hierarchy (with this system of fundamental sequences) $$H_{\Gamma_{\varphi(2,0,198)+199}\omega^{200}+\Gamma_{\varphi(2,0,198)+199}\omega^{199}3}(200)$$
Slow-growing hierarchy $$g_{\theta(\Gamma_{\varphi(2,0,\Omega+199)+199}+200,\vartheta(\Gamma_{\varphi(2,0,\Omega+199)+199}+200))}(3)$$

## Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.