11,327
pages

Grand Kilohugetrixul is equal to (...((200![200(1)200(1)200(1)200])![200(1)200(1)200(1)200])...![200(1)200(1)200(1)200])![200(1)200(1)200(1)200] (with Kilohugetrixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "grand" and the number "Kilohugetrixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,3,201[1[1\neg3]200[1\neg3]200[1\neg3]200]2\} \\ ,201[1[1\neg3]200[1\neg3]200[1\neg3]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,3,201[1[1/2\sim2]200[1/2\sim2]200[1/2\sim2]200]2\} \\ ,201[1[1/2\sim2]200[1/2\sim2]200[1/2\sim2]200]2\}$$
BEAF $$\{200,\{200,3,201 \\ (\{X,\{X,\{X,199X,1,4\}+199X,1,3\}+199X,1,2\})2\} \\ ,201(\{X,\{X,\{X,199X,1,4\}+199X,1,3\}+199X,1,2\})2\}$$[2]
Fast-growing hierarchy $$f_{\Gamma_{\varphi(2,0,\varphi(3,0,198)+199)+199}+200}(f_{\Gamma_{\varphi(2,0,\varphi(3,0,198)+199)+199}+199}^2(200))$$
Hardy hierarchy $$H_{\Gamma_{\varphi(2,0,\varphi(3,0,198)+199)+199}\omega^{200}+\Gamma_{\varphi(2,0,\varphi(3,0,198)+199)+199}\omega^{199}2}(200)$$
Slow-growing hierarchy $$g_{\theta(\Gamma_{\varphi(2,0,\varphi(3,0,\Omega+199)+199)+199}+200,\theta(\Gamma_{\varphi(2,0,\varphi(3,0,\Omega+199)+199)+199}+199,\vartheta(\Gamma_{\varphi(2,0,\varphi(3,0,\Omega+199)+199)+199}+199)))}(200)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.