11,329
pages

Grand Kilodestrutrixul is equal to (...((200![200([200([200(200)200])200])200])![200([200([200(200)200])200])200])...)![200([200([200(200)200])200])200] (with Kilodestrutrixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on the word "grand" and the number "Kilodestrutrixul".

Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,3,201[1[1\neg200[1\neg200[1\neg202]200]200]200]2\} \\ ,201[1[1\neg200[1\neg200[1\neg202]200]200]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,3,201[1[1/200[1[1/200[1[1/201\sim2] \\ 200]2\sim2]200]2\sim2]200]2\},201[1[1/200[1[1/200 \\ [1[1/201\sim2]200]2\sim2]200]2\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+200}(f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+199}^2(200))$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)\times(\omega^{200}+\omega^{199}2)}(200)$$