11,051 Pages

Grand Kilodestrubixul is equal to (...(200![200([200(200)200])200])![200([200(200)200])200]...)![200([200(200)200])200] (with Kilodestrubixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on the word "grand" and the number "Kilodestrubixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,3,201[1[1\neg200[1\neg202]200]200]2\} \\ ,201[1[1\neg200[1\neg202]200]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,3,201[1[1/200[1[1/201\sim2]200]2\sim2]200]2\} \\ ,201[1[1/200[1[1/201\sim2]200]2\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\theta(\Omega^{\theta(\Omega^{200},198)+199},198)+200}(f_{\theta(\Omega^{\theta(\Omega^{200},198)+199},198)+199}^2(200))$$
Hardy hierarchy $$H_{\theta(\Omega^{\theta(\Omega^{200},198)+199},198)\times(\omega^{200}+\omega^{199}2)}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2^{\theta_1(\Omega_2^{200},198)+199}+\theta_1(\Omega_2^{\theta_1(\Omega_2^{200},198)+199},198)+200,} \\ _{\theta(\Omega_2^{\theta_1(\Omega_2^{200},198)+199}+\theta_1(\Omega_2^{\theta_1(\Omega_2^{200},198)+199},198)+199,} \\ _{\vartheta(\Omega_2^{\theta_1(\Omega_2^{200},198)+199}+\theta_1(\Omega_2^{\theta_1(\Omega_2^{200},198)+199},198)+199)))}(200)$$