Googology Wiki
Advertisement
Googology Wiki

Grand Gigaenormaquaxul is equal to ((...((200![200(2)200(2)200(2)200])![200(2)200(2)200(2)200])![200(2)200(2)200(2)200]...)![200(2)200(2)200(2)200])![200(2)200(2)200(2)200] (with Gigaenormaquaxul parentheses), using Hyperfactorial array notation.[1]

Etymology

The name of this number is based on the word "grand" and the number "Gigaenormaquaxul".

Approximations

Notation Approximation
Bird's array notation \(\{200,\{200,5,201[1[1\neg4]200[1\neg4]200[1\neg4]200[1\neg4]200]2\} \\ ,201[1[1\neg4]200[1\neg4]200[1\neg4]200[1\neg4]200]2\}\)
Hierarchical Hyper-Nested Array Notation \(\{200,\{200,5,201[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200]2\} \\ ,201[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200]2\}\)
BEAF \(\{200,\{200,5,201(\{X,\{X,\{X,\{X,199X,1,1,5\}+199X,1,1,4\} \\ +199X,1,1,3\}+199X,1,1,2\})2\},201(\{X,\{X,\{X, \\ \{X,199X,1,1,5\}+199X,1,1,4\}+199X,1,1,3\}+199X,1,1,2\})2\}\)[2]
Fast-growing hierarchy (using this system of FSes) \(f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)+200} \\ (f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)+199}^4(200))\)
Hardy hierarchy \(H_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,198)+199)+199)+199)\times(\omega^{200}+\omega^{199}4)}(200)\)
Slow-growing hierarchy \(g_{\theta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\Omega+199)+199)+199)+199)+200,} \\ _{\vartheta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\varphi(4,0,0,\Omega+199)+199)+199)+199)+200))}(4)\)

Sources

  1. Lawrence Hollom's large numbers site
  2. Using particular notation \(\{a,b (A) 2\} = A \&\ a\) with prime b.

See also

Template:Enourmaxul factorial numbers

Advertisement