10,972 Pages

Not to be confused with godgathor.

Godhathor (formerly godextathol) is equal to E100#^#^#^#^#^#^#100 in Cascading-E Notation.[1][2] The term was coined by Sbiis Saibian.

## Etymology

The name of this number is based on the prefix "god-" (meaning one hyperion at the top cascade level) and the suffix "-hathor" (meaning cascade level 6).

## Approximations in other notations

Notation Approximation
BEAF $$\{100,100 (((0,1) 1) 1) 2\}$$
Bird's array notation $$\{100,100 [1 [1 [1,2] 2] 2] 2\}$$
Hyperfactorial array notation $$100![1,[1,[1,[1,[1,[1,99,100],1,2],1,3],1,4],1,5],1,6]$$
Fast-growing hierarchy $$f_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^\omega}}}}}}(100)$$
Fast-growing hierarchy (with Veblen function) $$f_{\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(1)))))))}(100)$$
Hardy hierarchy $$H_{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^{\omega^\omega}}}}}}}(100)$$
Hardy hierarchy (with Veblen function) $$H_{\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(\varphi_0(1))))))))}(100)$$
Slow-growing hierarchy $$g_{\vartheta(\Omega^{\Omega^{\Omega^{\Omega^{\Omega^{\Omega^\omega}}}}})}(100)$$