11,328
pages

The ennacthulhum super regiment is a series of numbers from E100#{7}#100 to E100#{8}#(E100#{8}#(E100#{8}#(E100#{8}#(E100#{8}#100)))) defined using Extended Cascading-E Notation (i.e. beginning from ennacthulhum and up to ennacthularxi-ennacthularxi-ennacthularxi-ennacthularxi-ennacthularxihect).[1] The numbers were coined by Sbiis Saibian.

Previous regiment Next regiment
Ogdacthulhum super regiment Dekacthulhum super regiment

## List of numbers of the regiment

 Name of number Extended Cascading-E Notation (definition) Fast-growing hierarchy (approximation) ennacthulhum E100#{7}#100 $$f_{\varphi(5,0,0)}(100)$$ grand ennacthulhum E100#{7}#100#2 $$f^2_{\varphi(5,0,0)}(100)$$ grangol-carta-ennacthulhum E100#{7}#100#100 $$f_{\varphi(5,0,0)+1}(100)$$ godgahlah-carta-ennacthulhum E100#{7}#100#^#100 $$f_{\varphi(5,0,0)+\omega^\omega}(100)$$ tethrathoth-carta-ennacthulhum E100#{7}#100#^^#100 $$f_{\varphi(5,0,0)+\varepsilon_0}(100)$$ pentacthulhum-carta-ennacthulhum E100#{7}#100#^^^#100 $$f_{\varphi(5,0,0)+\Gamma_0}(100)$$ hexacthulhum-carta-ennacthulhum E100#{7}#100#^^^^#100 $$f_{\varphi(5,0,0)+\varphi(2,0,0)}(100)$$ heptacthulhum-carta-ennacthulhum E100#{7}#100#{5}#100 $$f_{\varphi(5,0,0)+\varphi(3,0,0)}(100)$$ ogdacthulhum-carta-ennacthulhum E100#{7}#100#{6}#100 $$f_{\varphi(5,0,0)+\varphi(4,0,0)}(100)$$ ennacthulhum-by-deuteron, ennacthulhum-carta-ennacthulhum E100#{7}#100#{7}#100 $$f_{\varphi(5,0,0)2}(100)$$ ennacthulhum-by-triton E100#{7}#100#{7}#100#{7}#100 $$f_{\varphi(5,0,0)3}(100)$$ ennacthulhum-by-teterton E100#{7}#*#5 $$f_{\varphi(5,0,0)4}(100)$$ ennacthulhum-by-pepton E100#{7}#*#6 $$f_{\varphi(5,0,0)5}(100)$$ ennacthulhum-by-exton E100#{7}#*#7 $$f_{\varphi(5,0,0)6}(100)$$ ennacthulhum-by-epton E100#{7}#*#8 $$f_{\varphi(5,0,0)7}(100)$$ ennacthulhum-by-ogdon E100#{7}#*#9 $$f_{\varphi(5,0,0)8}(100)$$ ennacthulhum-by-enton E100#{7}#*#10 $$f_{\varphi(5,0,0)9}(100)$$ ennacthulhum-by-dekaton E100#{7}#*#11 $$f_{\varphi(5,0,0)10}(100)$$ ennacthulhum-by-hyperion E100#{7}#*#100 $$f_{\varphi(5,0,0)\omega}(100)$$ ennacthulhum-by-godgahlah E100#{7}#*#^#100 $$f_{\varphi(5,0,0)\omega^\omega}(100)$$ ennacthulhum-by-tethrathoth E100#{7}#*#^^#100 $$f_{\varphi(5,0,0)\varepsilon_0}(100)$$ ennacthulhum-by-pentacthulhum E100#{7}#*#^^^#100 $$f_{\varphi(5,0,0)\Gamma_0}(100)$$ ennacthulhum-by-hexacthulhum E100#{7}#*#^^^^#100 $$f_{\varphi(5,0,0)\varphi(2,0,0)}(100)$$ ennacthulhum-by-heptacthulhum E100#{7}#*#{5}#100 $$f_{\varphi(5,0,0)\varphi(3,0,0)}(100)$$ ennacthulhum-by-ogdacthulhum E100#{7}#*#{6}#100 $$f_{\varphi(5,0,0)\varphi(4,0,0)}(100)$$ deutero-ennacthulhum, ennacthulhum-by-ennacthulhum E100#{7}#*#{7}#100 $$f_{\varphi(5,0,0)^2}(100)$$ trito-ennacthulhum E100#{7}#*#{7}#*#{7}#100 $$f_{\varphi(5,0,0)^3}(100)$$ teterto-ennacthulhum E100(#{7}#)^#4 $$f_{\varphi(5,0,0)^4}(100)$$ pepto-ennacthulhum E100(#{7}#)^#5 $$f_{\varphi(5,0,0)^5}(100)$$ exto-ennacthulhum E100(#{7}#)^#6 $$f_{\varphi(5,0,0)^6}(100)$$ epto-ennacthulhum E100(#{7}#)^#7 $$f_{\varphi(5,0,0)^7}(100)$$ ogdo-ennacthulhum E100(#{7}#)^#8 $$f_{\varphi(5,0,0)^8}(100)$$ ento-ennacthulhum E100(#{7}#)^#9 $$f_{\varphi(5,0,0)^9}(100)$$ dekato-ennacthulhum E100(#{7}#)^#10 $$f_{\varphi(5,0,0)^{10}}(100)$$ ennacthulhufact E100(#{7}#)^#100 $$f_{\varphi(5,0,0)^\omega}(100)$$ quadrata-ennacthulhum E100(#{7}#)^##100 $$f_{\varphi(5,0,0)^{\omega^2}}(100)$$ kubiku-ennacthulhum E100(#{7}#)^###100 $$f_{\varphi(5,0,0)^{\omega^3}}(100)$$ quarticu-ennacthulhum E100(#{7}#)^####100 $$f_{\varphi(5,0,0)^{\omega^4}}(100)$$ quinticu-ennacthulhum E100(#{7}#)^(#^5)100 $$f_{\varphi(5,0,0)^{\omega^5}}(100)$$ sexticu-ennacthulhum E100(#{7}#)^(#^6)100 $$f_{\varphi(5,0,0)^{\omega^6}}(100)$$ septicu-ennacthulhum E100(#{7}#)^(#^7)100 $$f_{\varphi(5,0,0)^{\omega^7}}(100)$$ octicu-ennacthulhum E100(#{7}#)^(#^8)100 $$f_{\varphi(5,0,0)^{\omega^8}}(100)$$ nonicu-ennacthulhum E100(#{7}#)^(#^9)100 $$f_{\varphi(5,0,0)^{\omega^9}}(100)$$ decicu-ennacthulhum E100(#{7}#)^(#^10)100 $$f_{\varphi(5,0,0)^{\omega^{10}}}(100)$$ ennacthulhum-ipso-godgahlah E100(#{7}#)^#^#100 $$f_{\varphi(5,0,0)^{\omega^\omega}}(100)$$ ennacthulhum-ipso-tethrathoth E100(#{7}#)^#^^#100 $$f_{\varphi(5,0,0)^{\varepsilon_0}}(100)$$ ennacthulhum-ipso-pentacthulhum E100(#{7}#)^#^^^#100 $$f_{\varphi(5,0,0)^{\Gamma_0}}(100)$$ ennacthulhum-ipso-hexacthulhum E100(#{7}#)^#^^^^#100 $$f_{\varphi(5,0,0)^{\varphi(2,0,0)}}(100)$$ ennacthulhum-ipso-heptacthulhum E100(#{7}#)^(#{5}#)100 $$f_{\varphi(5,0,0)^{\varphi(3,0,0)}}(100)$$ ennacthulhum-ipso-ogdacthulhum E100(#{7}#)^(#{6}#)100 $$f_{\varphi(5,0,0)^{\varphi(4,0,0)}}(100)$$ dutetrated ennacthulhum, ennacthulhum-ipso-ennacthulhum E100(#{7}#)^(#{7}#)100 $$f_{\varphi(5,0,0)^{\varphi(5,0,0)}}(100)$$ tritetrated ennacthulhum E100(#{7}#)^(#{7}#)^(#{7}#)100 $$f_{\varphi(5,0,0)^{\varphi(5,0,0)^{\varphi(5,0,0)}}}(100)$$ quadratetrated ennacthulhum E100(#{7}#)^^#4 $$f_{\varphi(5,0,0)\uparrow\uparrow4}(100)$$ quinquatetrated ennacthulhum E100(#{7}#)^^#5 $$f_{\varphi(5,0,0)\uparrow\uparrow5}(100)$$ sexatetrated ennacthulhum E100(#{7}#)^^#6 $$f_{\varphi(5,0,0)\uparrow\uparrow6}(100)$$ septatetrated ennacthulhum E100(#{7}#)^^#7 $$f_{\varphi(5,0,0)\uparrow\uparrow7}(100)$$ octatetrated ennacthulhum E100(#{7}#)^^#8 $$f_{\varphi(5,0,0)\uparrow\uparrow8}(100)$$ nonatetrated ennacthulhum E100(#{7}#)^^#9 $$f_{\varphi(5,0,0)\uparrow\uparrow9}(100)$$ decatetrated ennacthulhum E100(#{7}#)^^#10 $$f_{\varphi(5,0,0)\uparrow\uparrow10}(100)$$ terrible ennacthulhum E100(#{7}#)^^#100 $$f_{\varepsilon_{\varphi(5,0,0)+1}}(100)$$ terrisquared ennacthulhum E100(#{7}#)^^##100 $$f_{\zeta_{\varphi(5,0,0)+1}}(100)$$ terricubed ennacthulhum E100(#{7}#)^^###100 $$f_{\eta_{\varphi(5,0,0)+1}}(100)$$ territesserated ennacthulhum E100(#{7}#)^^####100 $$f_{\varphi(4,\varphi(5,0,0)+1)}(100)$$ terripenterated ennacthulhum E100(#{7}#)^^(#^5)100 $$f_{\varphi(5,\varphi(5,0,0)+1)}(100)$$ terrihexerated ennacthulhum E100(#{7}#)^^(#^6)100 $$f_{\varphi(6,\varphi(5,0,0)+1)}(100)$$ terrihepterated ennacthulhum E100(#{7}#)^^(#^7)100 $$f_{\varphi(7,\varphi(5,0,0)+1)}(100)$$ terriocterated ennacthulhum E100(#{7}#)^^(#^8)100 $$f_{\varphi(8,\varphi(5,0,0)+1)}(100)$$ terriennerated ennacthulhum E100(#{7}#)^^(#^9)100 $$f_{\varphi(9,\varphi(5,0,0)+1)}(100)$$ terridekerated ennacthulhum E100(#{7}#)^^(#^10)100 $$f_{\varphi(10,\varphi(5,0,0)+1)}(100)$$ godgahlah-tetrated ennacthulhum E100(#{7}#)^^#^#100 $$f_{\varphi(\omega,\varphi(5,0,0)+1)}(100)$$ tethrathoth-tetrated ennacthulhum E100(#{7}#)^^#^^#100 $$f_{\varphi(\varepsilon_0,\varphi(5,0,0)+1)}(100)$$ pentacthulhum-tetrated ennacthulhum E100(#{7}#)^^#^^^#100 $$f_{\varphi(\Gamma_0,\varphi(5,0,0)+1)}(100)$$ hexacthulhum-tetrated ennacthulhum E100(#{7}#)^^#^^^^#100 $$f_{\varphi(\varphi(2,0,0),\varphi(5,0,0)+1)}(100)$$ heptacthulhum-tetrated ennacthulhum E100(#{7}#)^^(#{5}#)100 $$f_{\varphi(\varphi(3,0,0),\varphi(5,0,0)+1)}(100)$$ ogdacthulhum-tetrated ennacthulhum E100(#{7}#)^^(#{6}#)100 $$f_{\varphi(\varphi(4,0,0),\varphi(5,0,0)+1)}(100)$$ dupentated ennacthulhum, ennacthulhum-tetrated-ennacthulhum E100(#{7}#)^^(#{7}#)100 $$f_{\varphi(\varphi(5,0,0),1)}(100)$$ tripentated ennacthulhum E100(#{7}#)^^(#{7}#)^^(#{7}#)100 $$f_{\varphi(\varphi(\varphi(5,0,0),1),0)}(100)$$ quadrapentated ennacthulhum E100(#{7}#)^^^#4 $$f_{\Gamma_{\varphi(5,0,0)+1}[4]}(100)$$ quinquapentated ennacthulhum E100(#{7}#)^^^#5 $$f_{\Gamma_{\varphi(5,0,0)+1}[5]}(100)$$ sexapentated ennacthulhum E100(#{7}#)^^^#6 $$f_{\Gamma_{\varphi(5,0,0)+1}[6]}(100)$$ septapentated ennacthulhum E100(#{7}#)^^^#7 $$f_{\Gamma_{\varphi(5,0,0)+1}[7]}(100)$$ octapentated ennacthulhum E100(#{7}#)^^^#8 $$f_{\Gamma_{\varphi(5,0,0)+1}[8]}(100)$$ nonapentated ennacthulhum E100(#{7}#)^^^#9 $$f_{\Gamma_{\varphi(5,0,0)+1}[9]}(100)$$ decapentated ennacthulhum E100(#{7}#)^^^#10 $$f_{\Gamma_{\varphi(5,0,0)+1}[10]}(100)$$ horrible ennacthulhum E100(#{7}#)^^^#100 $$f_{\Gamma_{\varphi(5,0,0)+1}}(100)$$ horrisquared ennacthulhum E100(#{7}#)^^^##100 $$f_{\varphi(1,1,\varphi(5,0,0)+1)}(100)$$ horrisquared ennacthulhum E100(#{7}#)^^^##100 $$f_{\varphi(1,1,\varphi(5,0,0)+1)}(100)$$ horricubed ennacthulhum E100(#{7}#)^^^###100 $$f_{\varphi(1,2,\varphi(5,0,0)+1)}(100)$$ horritesserated ennacthulhum E100(#{7}#)^^^####100 $$f_{\varphi(1,3,\varphi(5,0,0)+1)}(100)$$ horripenterated ennacthulhum E100(#{7}#)^^^(#^5)100 $$f_{\varphi(1,4,\varphi(5,0,0)+1)}(100)$$ horrihexerated ennacthulhum E100(#{7}#)^^^(#^6)100 $$f_{\varphi(1,5,\varphi(5,0,0)+1)}(100)$$ horrihepterated ennacthulhum E100(#{7}#)^^^(#^7)100 $$f_{\varphi(1,6,\varphi(5,0,0)+1)}(100)$$ horriocterated ennacthulhum E100(#{7}#)^^^(#^8)100 $$f_{\varphi(1,7,\varphi(5,0,0)+1)}(100)$$ horriennerated ennacthulhum E100(#{7}#)^^^(#^9)100 $$f_{\varphi(1,8,\varphi(5,0,0)+1)}(100)$$ horridekerated ennacthulhum E100(#{7}#)^^^(#^10)100 $$f_{\varphi(1,9,\varphi(5,0,0)+1)}(100)$$ godgahlah-pentated ennacthulhum E100(#{7}#)^^^#^#100 $$f_{\varphi(1,\omega,\varphi(5,0,0)+1)}(100)$$ tethrathoth-pentated ennacthulhum E100(#{7}#)^^^#^^#100 $$f_{\varphi(1,\varepsilon_0,\varphi(5,0,0)+1)}(100)$$ pentacthulhum-pentated ennacthulhum E100(#{7}#)^^^#^^^#100 $$f_{\varphi(1,\Gamma_0,\varphi(5,0,0)+1)}(100)$$ hexacthulhum-pentated ennacthulhum E100(#{7}#)^^^#^^^^#100 $$f_{\varphi(1,\varphi(2,0,0),\varphi(5,0,0)+1)}(100)$$ heptacthulhum-pentated ennacthulhum E100(#{7}#)^^^(#{5}#)100 $$f_{\varphi(1,\varphi(3,0,0),\varphi(5,0,0)+1)}(100)$$ ogdacthulhum-pentated ennacthulhum E100(#{7}#)^^^(#{6}#)100 $$f_{\varphi(1,\varphi(4,0,0),\varphi(5,0,0)+1)}(100)$$ duhexated ennacthulhum, ennacthulhum-pentated ennacthulhum E100(#{7}#)^^^(#{7}#)100 $$f_{\varphi(1,\varphi(5,0,0),1)}(100)$$ trihexated ennacthulhum E100(#{7}#)^^^(#{7}#)^^^(#{7}#)100 $$f_{\varphi(1,\varphi(1,\varphi(5,0,0),1),0)}(100)$$ quadrahexated ennacthulhum E100(#{7}#)^^^^#4 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[4]}(100)$$ quinquahexated ennacthulhum E100(#{7}#)^^^^#5 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[5]}(100)$$ sexahexated ennacthulhum E100(#{7}#)^^^^#6 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[6]}(100)$$ septahexated ennacthulhum E100(#{7}#)^^^^#7 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[7]}(100)$$ octahexated ennacthulhum E100(#{7}#)^^^^#8 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[8]}(100)$$ nonahexated ennacthulhum E100(#{7}#)^^^^#9 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[9]}(100)$$ decahexated ennacthulhum E100(#{7}#)^^^^#10 $$f_{\varphi(2,0,\varphi(5,0,0)+1)[10]}(100)$$ horrendous ennacthulhum E100(#{7}#)^^^^#100 $$f_{\varphi(2,0,\varphi(5,0,0)+1)}(100)$$ horrendosquared ennacthulhum E100(#{7}#)^^^^##100 $$f_{\varphi(2,1,\varphi(5,0,0)+1)}(100)$$ horrendocubed ennacthulhum E100(#{7}#)^^^^###100 $$f_{\varphi(2,2,\varphi(5,0,0)+1)}(100)$$ horrendotesserated ennacthulhum E100(#{7}#)^^^^####100 $$f_{\varphi(2,3,\varphi(5,0,0)+1)}(100)$$ horrendopenterated ennacthulhum E100(#{7}#)^^^^(#^5)100 $$f_{\varphi(2,4,\varphi(5,0,0)+1)}(100)$$ horrendohexerated ennacthulhum E100(#{7}#)^^^^(#^6)100 $$f_{\varphi(2,5,\varphi(5,0,0)+1)}(100)$$ horrendohepterated ennacthulhum E100(#{7}#)^^^^(#^7)100 $$f_{\varphi(2,6,\varphi(5,0,0)+1)}(100)$$ horrendo-octerated ennacthulhum E100(#{7}#)^^^^(#^8)100 $$f_{\varphi(2,7,\varphi(5,0,0)+1)}(100)$$ horrendo-ennerated ennacthulhum E100(#{7}#)^^^^(#^9)100 $$f_{\varphi(2,8,\varphi(5,0,0)+1)}(100)$$ horrendodekerated ennacthulhum E100(#{7}#)^^^^(#^10)100 $$f_{\varphi(2,9,\varphi(5,0,0)+1)}(100)$$ godgahlah-hexated ennacthulhum E100(#{7}#)^^^^#^#100 $$f_{\varphi(2,\omega,\varphi(5,0,0)+1)}(100)$$ tethrathoth-hexated ennacthulhum E100(#{7}#)^^^^#^^#100 $$f_{\varphi(2,\varepsilon_0,\varphi(5,0,0)+1)}(100)$$ pentacthulhum-hexated ennacthulhum E100(#{7}#)^^^^#^^^#100 $$f_{\varphi(2,\Gamma_0,\varphi(5,0,0)+1)}(100)$$ hexacthulhum-hexated ennacthulhum E100(#{7}#)^^^^#^^^^#100 $$f_{\varphi(2,\varphi(2,0,0),\varphi(5,0,0)+1)}(100)$$ heptacthulhum-hexated ennacthulhum E100(#{7}#)^^^^(#{5}#)100 $$f_{\varphi(2,\varphi(3,0,0),\varphi(5,0,0)+1)}(100)$$ ogdacthulhum-hexated ennacthulhum E100(#{7}#)^^^^(#{6}#)100 $$f_{\varphi(2,\varphi(4,0,0),\varphi(5,0,0)+1)}(100)$$ duheptated ennacthulhum, ennacthulhum-hexated ennacthulhum E100(#{7}#)^^^^(#{7}#)100 $$f_{\varphi(2,\varphi(5,0,0),1)}(100)$$ triheptated ennacthulhum E100(#{7}#)^^^^(#{7}#)^^^^(#{7}#)100 $$f_{\varphi(2,\varphi(2,\varphi(5,0,0),1),0)}(100)$$ quadraheptated ennacthulhum E100(#{7}#){5}#4 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[4]}(100)$$ quinquaheptated ennacthulhum E100(#{7}#){5}#5 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[5]}(100)$$ sexaheptated ennacthulhum E100(#{7}#){5}#6 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[6]}(100)$$ septaheptated ennacthulhum E100(#{7}#){5}#7 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[7]}(100)$$ octaheptated ennacthulhum E100(#{7}#){5}#8 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[8]}(100)$$ nonaheptated ennacthulhum E100(#{7}#){5}#9 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[9]}(100)$$ decaheptated ennacthulhum E100(#{7}#){5}#10 $$f_{\varphi(3,0,\varphi(5,0,0)+1)[10]}(100)$$ heptorrendous ennacthulhum E100(#{7}#){5}#100 $$f_{\varphi(3,0,\varphi(5,0,0)+1)}(100)$$ heptorrendosquared ennacthulhum E100(#{7}#){5}##100 $$f_{\varphi(3,1,\varphi(5,0,0)+1)}(100)$$ heptorrendocubed ennacthulhum E100(#{7}#){5}###100 $$f_{\varphi(3,2,\varphi(5,0,0)+1)}(100)$$ heptorrendotesserated ennacthulhum E100(#{7}#){5}####100 $$f_{\varphi(3,3,\varphi(5,0,0)+1)}(100)$$ heptorrendopenterated ennacthulhum E100(#{7}#){5}(#^5)100 $$f_{\varphi(3,4,\varphi(5,0,0)+1)}(100)$$ heptorrendohexerated ennacthulhum E100(#{7}#){5}(#^6)100 $$f_{\varphi(3,5,\varphi(5,0,0)+1)}(100)$$ heptorrendohepterated ennacthulhum E100(#{7}#){5}(#^7)100 $$f_{\varphi(3,6,\varphi(5,0,0)+1)}(100)$$ heptorrendo-octerated ennacthulhum E100(#{7}#){5}(#^8)100 $$f_{\varphi(3,7,\varphi(5,0,0)+1)}(100)$$ heptorrendo-ennerated ennacthulhum E100(#{7}#){5}(#^9)100 $$f_{\varphi(3,8,\varphi(5,0,0)+1)}(100)$$ heptorrendodekerated ennacthulhum E100(#{7}#){5}(#^10)100 $$f_{\varphi(3,9,\varphi(5,0,0)+1)}(100)$$ godgahlah-heptated ennacthulhum E100(#{7}#){5}#^#100 $$f_{\varphi(3,\omega,\varphi(5,0,0)+1)}(100)$$ tethrathoth-heptated ennacthulhum E100(#{7}#){5}#^^#100 $$f_{\varphi(3,\varepsilon_0,\varphi(5,0,0)+1)}(100)$$ pentacthulhum-heptated ennacthulhum E100(#{7}#){5}#^^^#100 $$f_{\varphi(3,\Gamma_0,\varphi(5,0,0)+1)}(100)$$ hexacthulhum-heptated ennacthulhum E100(#{7}#){5}#^^^^#100 $$f_{\varphi(3,\varphi(2,0,0),\varphi(5,0,0)+1)}(100)$$ heptacthulhum-heptated ennacthulhum E100(#{7}#){5}(#{5}#)100 $$f_{\varphi(3,\varphi(3,0,0),\varphi(5,0,0)+1)}(100)$$ ogdacthulhum-heptated ennacthulhum E100(#{7}#){5}(#{6}#)100 $$f_{\varphi(3,\varphi(4,0,0),\varphi(5,0,0)+1)}(100)$$ du-octated ennacthulhum, ennacthulhum-heptated ennacthulhum E100(#{7}#){5}(#{7}#)100 $$f_{\varphi(3,\varphi(5,0,0),1)}(100)$$ tri-octated ennacthulhum E100(#{7}#){5}(#{7}#){5}(#{7}#)100 $$f_{\varphi(3,\varphi(3,\varphi(5,0,0),1),0)}(100)$$ quadra-octated ennacthulhum E100(#{7}#){6}#4 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[4]}(100)$$ quinqua-octated ennacthulhum E100(#{7}#){6}#5 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[5]}(100)$$ sexa-octated ennacthulhum E100(#{7}#){6}#6 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[6]}(100)$$ septa-octated ennacthulhum E100(#{7}#){6}#7 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[7]}(100)$$ octa-octated ennacthulhum E100(#{7}#){6}#8 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[8]}(100)$$ nona-octated ennacthulhum E100(#{7}#){6}#9 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[9]}(100)$$ deca-octated ennacthulhum E100(#{7}#){6}#10 $$f_{\varphi(4,0,\varphi(5,0,0)+1)[10]}(100)$$ ogdorrendous ennacthulhum E100(#{7}#){6}#100 $$f_{\varphi(4,0,\varphi(5,0,0)+1)}(100)$$ ogdorrendosquared ennacthulhum E100(#{7}#){6}##100 $$f_{\varphi(4,1,\varphi(5,0,0)+1)}(100)$$ ogdorrendocubed ennacthulhum E100(#{7}#){6}###100 $$f_{\varphi(4,2,\varphi(5,0,0)+1)}(100)$$ ogdorrendotesserated ennacthulhum E100(#{7}#){6}####100 $$f_{\varphi(4,3,\varphi(5,0,0)+1)}(100)$$ ogdorrendopenterated ennacthulhum E100(#{7}#){6}(#^5)100 $$f_{\varphi(4,4,\varphi(5,0,0)+1)}(100)$$ ogdorrendohexerated ennacthulhum E100(#{7}#){6}(#^6)100 $$f_{\varphi(4,5,\varphi(5,0,0)+1)}(100)$$ ogdorrendohepterated ennacthulhum E100(#{7}#){6}(#^7)100 $$f_{\varphi(4,6,\varphi(5,0,0)+1)}(100)$$ ogdorrendo-octerated ennacthulhum E100(#{7}#){6}(#^8)100 $$f_{\varphi(4,7,\varphi(5,0,0)+1)}(100)$$ ogdorrendo-ennerated ennacthulhum E100(#{7}#){6}(#^9)100 $$f_{\varphi(4,8,\varphi(5,0,0)+1)}(100)$$ ogdorrendodekerated ennacthulhum E100(#{7}#){6}(#^10)100 $$f_{\varphi(4,9,\varphi(5,0,0)+1)}(100)$$ godgahlah-octated ennacthulhum E100(#{7}#){6}#^#100 $$f_{\varphi(4,\omega,\varphi(5,0,0)+1)}(100)$$ tethrathoth-octated ennacthulhum E100(#{7}#){6}#^^#100 $$f_{\varphi(4,\varepsilon_0,\varphi(5,0,0)+1)}(100)$$ pentacthulhum-octated ennacthulhum E100(#{7}#){6}#^^^#100 $$f_{\varphi(4,\Gamma_0,\varphi(5,0,0)+1)}(100)$$ hexacthulhum-octated ennacthulhum E100(#{7}#){6}#^^^^#100 $$f_{\varphi(4,\varphi(2,0,0),\varphi(5,0,0)+1)}(100)$$ heptacthulhum-octated ennacthulhum E100(#{7}#){6}(#{5}#)100 $$f_{\varphi(4,\varphi(3,0,0),\varphi(5,0,0)+1)}(100)$$ ogdacthulhum-octated ennacthulhum E100(#{7}#){6}(#{6}#)100 $$f_{\varphi(4,\varphi(4,0,0),\varphi(5,0,0)+1)}(100)$$ du-ennated ennacthulhum, ennacthulhum-octated ennacthulhum E100(#{7}#){6}(#{7}#)100 $$f_{\varphi(4,\varphi(5,0,0),1)}(100)$$ tri-ennated ennacthulhum E100(#{7}#){6}(#{7}#){6}(#{7}#)100 $$f_{\varphi(4,\varphi(4,\varphi(5,0,0),1),0)}(100)$$ quadra-ennated ennacthulhum E100(#{7}#){7}#4 $$f_{\varphi(5,0,1)[4]}(100)$$ quinqua-ennated ennacthulhum E100(#{7}#){7}#5 $$f_{\varphi(5,0,1)[5]}(100)$$ sexa-ennated ennacthulhum E100(#{7}#){7}#6 $$f_{\varphi(5,0,1)[6]}(100)$$ septa-ennated ennacthulhum E100(#{7}#){7}#7 $$f_{\varphi(5,0,1)[7]}(100)$$ octa-ennated ennacthulhum E100(#{7}#){7}#8 $$f_{\varphi(5,0,1)[8]}(100)$$ nona-ennated ennacthulhum E100(#{7}#){7}#9 $$f_{\varphi(5,0,1)[9]}(100)$$ deca-ennated ennacthulhum E100(#{7}#){7}#10 $$f_{\varphi(5,0,1)[10]}(100)$$ ennadeucthulhum E100(#{7}#){7}#100 $$f_{\varphi(5,0,1)}(100)$$ ennatritocthulhum E100((#{7}#){7}#){7}#100 $$f_{\varphi(5,0,2)}(100)$$ ennatetertocthulhum E100#{7}#>#4 $$f_{\varphi(5,0,3)}(100)$$ ennapeptocthulhum E100#{7}#>#5 $$f_{\varphi(5,0,4)}(100)$$ enna-extocthulhum E100#{7}#>#6 $$f_{\varphi(5,0,5)}(100)$$ enna-eptocthulhum E100#{7}#>#7 $$f_{\varphi(5,0,6)}(100)$$ enna-ogdocthulhum E100#{7}#>#8 $$f_{\varphi(5,0,7)}(100)$$ enna-entocthulhum E100#{7}#>#9 $$f_{\varphi(5,0,8)}(100)$$ enna-dekatocthulhum E100#{7}#>#10 $$f_{\varphi(5,0,9)}(100)$$ ennacthuliterator, ennacthulhum ba'al E100#{7}#>#100 $$f_{\varphi(5,0,\omega)}(100)$$ grand ennacthuliterator, great and ennorrendous ennacthulhum E100#{7}#>#100#2 $$f^2_{\varphi(5,0,\omega)}(100)$$ godgahlah-turreted-ennacthulhum E100#{7}#>#^#100 $$f_{\varphi(5,0,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulhum E100#{7}#>#^^#100 $$f_{\varphi(5,0,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulhum E100#{7}#>#^^^#100 $$f_{\varphi(5,0,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulhum E100#{7}#>#^^^^#100 $$f_{\varphi(5,0,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulhum E100#{7}#>#{5}#100 $$f_{\varphi(5,0,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulhum E100#{7}#>#{6}#100 $$f_{\varphi(5,0,\varphi(4,0,0))}(100)$$ dustaculated ennacthulhum, ennacthulhum-turreted-ennacthulhum E100#{7}#>#{7}#100 $$f_{\varphi(5,0,\varphi(5,0,0))}(100)$$ tristaculated ennacthulhum E100#{7}#>#{7}#>#{7}#100 $$f_{\varphi(5,0,\varphi(5,0,\varphi(5,0,0)))}(100)$$ tetrastaculated ennacthulhum E100#{7}##4 $$f_{\varphi(5,1,0)[4]}(100)$$ pentastaculated ennacthulhum E100#{7}##5 $$f_{\varphi(5,1,0)[5]}(100)$$ hexastaculated ennacthulhum E100#{7}##6 $$f_{\varphi(5,1,0)[6]}(100)$$ heptastaculated ennacthulhum E100#{7}##7 $$f_{\varphi(5,1,0)[7]}(100)$$ ogdastaculated ennacthulhum E100#{7}##8 $$f_{\varphi(5,1,0)[8]}(100)$$ ennastaculated ennacthulhum E100#{7}##9 $$f_{\varphi(5,1,0)[9]}(100)$$ dekastaculated ennacthulhum E100#{7}##10 $$f_{\varphi(5,1,0)[10]}(100)$$ ennacthulcross E100#{7}##100 $$f_{\varphi(5,1,0)}(100)$$ ennacthulitercross E100#{7}##>#100 $$f_{\varphi(5,1,\omega)}(100)$$ godgahlah-turreted-ennacthulcross E100#{7}##>#^#100 $$f_{\varphi(5,1,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulcross E100#{7}##>#^^#100 $$f_{\varphi(5,1,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulcross E100#{7}##>#^^^#100 $$f_{\varphi(5,1,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulcross E100#{7}##>#^^^^#100 $$f_{\varphi(5,1,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulcross E100#{7}##>#{5}#100 $$f_{\varphi(5,1,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulcross E100#{7}##>#{6}#100 $$f_{\varphi(5,1,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulcross E100#{7}##>#{7}#100 $$f_{\varphi(5,1,\varphi(5,0,0))}(100)$$ dustaculated ennacthulcross, ennacthulcross-turreted-ennacthulcross E100#{7}##>#{7}##100 $$f_{\varphi(5,1,\varphi(5,1,0))}(100)$$ tristaculated ennacthulcross E100#{7}##>#{7}##>#{7}##100 $$f_{\varphi(5,1,\varphi(5,1,\varphi(5,1,0)))}(100)$$ tetrastaculated ennacthulcross E100#{7}###4 $$f_{\varphi(5,2,0)[4]}(100)$$ pentastaculated ennacthulcross E100#{7}###5 $$f_{\varphi(5,2,0)[5]}(100)$$ hexastaculated ennacthulcross E100#{7}###6 $$f_{\varphi(5,2,0)[6]}(100)$$ heptastaculated ennacthulcross E100#{7}###7 $$f_{\varphi(5,2,0)[7]}(100)$$ ogdastaculated ennacthulcross E100#{7}###8 $$f_{\varphi(5,2,0)[8]}(100)$$ ennastaculated ennacthulcross E100#{7}###9 $$f_{\varphi(5,2,0)[9]}(100)$$ dekastaculated ennacthulcross E100#{7}###10 $$f_{\varphi(5,2,0)[10]}(100)$$ ennacthulcubor E100#{7}###100 $$f_{\varphi(5,2,0)}(100)$$ ennacthulitercubor E100#{7}###>#100 $$f_{\varphi(5,2,\omega)}(100)$$ godgahlah-turreted-ennacthulcubor E100#{7}###>#^#100 $$f_{\varphi(5,2,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulcubor E100#{7}###>#^^#100 $$f_{\varphi(5,2,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulcubor E100#{7}###>#^^^#100 $$f_{\varphi(5,2,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulcubor E100#{7}###>#^^^^#100 $$f_{\varphi(5,2,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulcubor E100#{7}###>#{5}#100 $$f_{\varphi(5,2,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulcubor E100#{7}###>#{6}#100 $$f_{\varphi(5,2,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulcubor E100#{7}###>#{7}#100 $$f_{\varphi(5,2,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulcubor E100#{7}###>#{7}##100 $$f_{\varphi(5,2,\varphi(5,1,0))}(100)$$ dustaculated ennacthulcubor, ennacthulcubor-turreted-ennacthulcubor E100#{7}###>#{7}###100 $$f_{\varphi(5,2,\varphi(5,2,0))}(100)$$ tristaculated ennacthulcubor E100#{7}###>#{7}###>#{7}###100 $$f_{\varphi(5,2,\varphi(5,2,\varphi(5,2,0)))}(100)$$ tetrastaculated ennacthulcubor E100#{7}####4 $$f_{\varphi(5,3,0)[4]}(100)$$ pentastaculated ennacthulcubor E100#{7}####5 $$f_{\varphi(5,3,0)[5]}(100)$$ hexastaculated ennacthulcubor E100#{7}####6 $$f_{\varphi(5,3,0)[6]}(100)$$ heptastaculated ennacthulcubor E100#{7}####7 $$f_{\varphi(5,3,0)[7]}(100)$$ ogdastaculated ennacthulcubor E100#{7}####8 $$f_{\varphi(5,3,0)[8]}(100)$$ ennastaculated ennacthulcubor E100#{7}####9 $$f_{\varphi(5,3,0)[9]}(100)$$ dekastaculated ennacthulcubor E100#{7}####10 $$f_{\varphi(5,3,0)[10]}(100)$$ ennacthulteron E100#{7}####100 $$f_{\varphi(5,3,0)}(100)$$ ennacthuliterteron E100#{7}####>#100 $$f_{\varphi(5,3,\omega)}(100)$$ godgahlah-turreted-ennacthulteron E100#{7}####>#^#100 $$f_{\varphi(5,3,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulteron E100#{7}####>#^^#100 $$f_{\varphi(5,3,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulteron E100#{7}####>#^^^#100 $$f_{\varphi(5,3,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulteron E100#{7}####>#^^^^#100 $$f_{\varphi(5,3,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulteron E100#{7}####>#{5}#100 $$f_{\varphi(5,3,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulteron E100#{7}####>#{6}#100 $$f_{\varphi(5,3,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulteron E100#{7}####>#{7}#100 $$f_{\varphi(5,3,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulteron E100#{7}####>#{7}##100 $$f_{\varphi(5,3,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthulteron E100#{7}####>#{7}###100 $$f_{\varphi(5,3,\varphi(5,2,0))}(100)$$ dustaculated ennacthulteron, ennacthulteron-turreted-ennacthulteron E100#{7}####>#{7}####100 $$f_{\varphi(5,3,\varphi(5,3,0))}(100)$$ tristaculated ennacthulteron E100#{7}####>#{7}####>#{7}####100 $$f_{\varphi(5,3,\varphi(5,3,\varphi(5,3,0)))}(100)$$ tetrastaculated ennacthulteron E100#{7}(#^5)4 $$f_{\varphi(5,4,0)[4]}(100)$$ pentastaculated ennacthulteron E100#{7}(#^5)5 $$f_{\varphi(5,4,0)[5]}(100)$$ hexastaculated ennacthulteron E100#{7}(#^5)6 $$f_{\varphi(5,4,0)[6]}(100)$$ heptastaculated ennacthulteron E100#{7}(#^5)7 $$f_{\varphi(5,4,0)[7]}(100)$$ ogdastaculated ennacthulteron E100#{7}(#^5)8 $$f_{\varphi(5,4,0)[8]}(100)$$ ennastaculated ennacthulteron E100#{7}(#^5)9 $$f_{\varphi(5,4,0)[9]}(100)$$ dekastaculated ennacthulteron E100#{7}(#^5)10 $$f_{\varphi(5,4,0)[10]}(100)$$ ennacthulpeton E100#{7}(#^5)100 $$f_{\varphi(5,4,0)}(100)$$ ennacthuliterpeton E100#{7}(#^5)>#100 $$f_{\varphi(5,4,\omega)}(100)$$ godgahlah-turreted-ennacthulpeton E100#{7}(#^5)>#^#100 $$f_{\varphi(5,4,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulpeton E100#{7}(#^5)>#^^#100 $$f_{\varphi(5,4,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulpeton E100#{7}(#^5)>#^^^#100 $$f_{\varphi(5,4,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulpeton E100#{7}(#^5)>#^^^^#100 $$f_{\varphi(5,4,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulpeton E100#{7}(#^5)>#{5}#100 $$f_{\varphi(5,4,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulpeton E100#{7}(#^5)>#{6}#100 $$f_{\varphi(5,4,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulpeton E100#{7}(#^5)>#{7}#100 $$f_{\varphi(5,4,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulpeton E100#{7}(#^5)>#{7}##100 $$f_{\varphi(5,4,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthulpeton E100#{7}(#^5)>#{7}###100 $$f_{\varphi(5,4,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthulpeton E100#{7}(#^5)>#{7}####100 $$f_{\varphi(5,4,\varphi(5,3,0))}(100)$$ dustaculated ennacthulpeton, ennacthulpeton-turreted-ennacthulpeton E100#{7}(#^5)>#{7}(#^5)100 $$f_{\varphi(5,4,\varphi(5,4,0))}(100)$$ tristaculated ennacthulpeton E100#{7}(#^5)>#{7}(#^5)>#{7}(#^5)100 $$f_{\varphi(5,4,\varphi(5,4,\varphi(5,4,0)))}(100)$$ tetrastaculated ennacthulpeton E100#{7}(#^6)4 $$f_{\varphi(5,5,0)[4]}(100)$$ pentastaculated ennacthulpeton E100#{7}(#^6)5 $$f_{\varphi(5,5,0)[5]}(100)$$ hexastaculated ennacthulpeton E100#{7}(#^6)6 $$f_{\varphi(5,5,0)[6]}(100)$$ heptastaculated ennacthulpeton E100#{7}(#^6)7 $$f_{\varphi(5,5,0)[7]}(100)$$ ogdastaculated ennacthulpeton E100#{7}(#^6)8 $$f_{\varphi(5,5,0)[8]}(100)$$ ennastaculated ennacthulpeton E100#{7}(#^6)9 $$f_{\varphi(5,5,0)[9]}(100)$$ dekastaculated ennacthulpeton E100#{7}(#^6)10 $$f_{\varphi(5,5,0)[10]}(100)$$ ennacthulhexon E100#{7}(#^6)100 $$f_{\varphi(5,5,0)}(100)$$ ennacthuliterhexon E100#{7}(#^6)>#100 $$f_{\varphi(5,5,\omega)}(100)$$ godgahlah-turreted-ennacthulhexon E100#{7}(#^6)>#^#100 $$f_{\varphi(5,5,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulhexon E100#{7}(#^6)>#^^#100 $$f_{\varphi(5,5,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulhexon E100#{7}(#^6)>#^^^#100 $$f_{\varphi(5,5,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulhexon E100#{7}(#^6)>#^^^^#100 $$f_{\varphi(5,5,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulhexon E100#{7}(#^6)>#{5}#100 $$f_{\varphi(5,5,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulhexon E100#{7}(#^6)>#{6}#100 $$f_{\varphi(5,5,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulhexon E100#{7}(#^6)>#{7}#100 $$f_{\varphi(5,5,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulhexon E100#{7}(#^6)>#{7}##100 $$f_{\varphi(5,5,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthulhexon E100#{7}(#^6)>#{7}###100 $$f_{\varphi(5,5,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthulhexon E100#{7}(#^6)>#{7}####100 $$f_{\varphi(5,5,\varphi(5,3,0))}(100)$$ ennacthulpeton-turreted-ennacthulhexon E100#{7}(#^6)>#{7}(#^5)100 $$f_{\varphi(5,5,\varphi(5,4,0))}(100)$$ dustaculated ennacthulhexon, ennacthulhexon-turreted-ennacthulhexon E100#{7}(#^6)>#{7}(#^6)100 $$f_{\varphi(5,5,\varphi(5,5,0))}(100)$$ tristaculated ennacthulhexon E100#{7}(#^6)>#{7}(#^6)>#{7}(#^6)100 $$f_{\varphi(5,5,\varphi(5,5,\varphi(5,5,0)))}(100)$$ tetrastaculated ennacthulhexon E100#{7}(#^7)4 $$f_{\varphi(5,6,0)[4]}(100)$$ pentastaculated ennacthulhexon E100#{7}(#^7)5 $$f_{\varphi(5,6,0)[5]}(100)$$ hexastaculated ennacthulhexon E100#{7}(#^7)6 $$f_{\varphi(5,6,0)[6]}(100)$$ heptastaculated ennacthulhexon E100#{7}(#^7)7 $$f_{\varphi(5,6,0)[7]}(100)$$ ogdastaculated ennacthulhexon E100#{7}(#^7)8 $$f_{\varphi(5,6,0)[8]}(100)$$ ennastaculated ennacthulhexon E100#{7}(#^7)9 $$f_{\varphi(5,6,0)[9]}(100)$$ dekastaculated ennacthulhexon E100#{7}(#^7)10 $$f_{\varphi(5,6,0)[10]}(100)$$ ennacthulhepton E100#{7}(#^7)100 $$f_{\varphi(5,6,0)}(100)$$ ennacthuliterhepton E100#{7}(#^7)>#100 $$f_{\varphi(5,6,\omega)}(100)$$ godgahlah-turreted-ennacthulhepton E100#{7}(#^7)>#^#100 $$f_{\varphi(5,6,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulhepton E100#{7}(#^7)>#^^#100 $$f_{\varphi(5,6,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulhepton E100#{7}(#^7)>#^^^#100 $$f_{\varphi(5,6,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulhepton E100#{7}(#^7)>#^^^^#100 $$f_{\varphi(5,6,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulhepton E100#{7}(#^7)>#{5}#100 $$f_{\varphi(5,6,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulhepton E100#{7}(#^7)>#{6}#100 $$f_{\varphi(5,6,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulhepton E100#{7}(#^7)>#{7}#100 $$f_{\varphi(5,6,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulhepton E100#{7}(#^7)>#{7}##100 $$f_{\varphi(5,6,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthulhepton E100#{7}(#^7)>#{7}###100 $$f_{\varphi(5,6,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthulhepton E100#{7}(#^7)>#{7}####100 $$f_{\varphi(5,6,\varphi(5,3,0))}(100)$$ ennacthulpeton-turreted-ennacthulhepton E100#{7}(#^7)>#{7}(#^5)100 $$f_{\varphi(5,6,\varphi(5,4,0))}(100)$$ ennacthulhexon-turreted-ennacthulhepton E100#{7}(#^7)>#{7}(#^6)100 $$f_{\varphi(5,6,\varphi(5,5,0))}(100)$$ dustaculated ennacthulhepton, ennacthulhepton-turreted-ennacthulhepton E100#{7}(#^7)>#{7}(#^7)100 $$f_{\varphi(5,6,\varphi(5,6,0))}(100)$$ tristaculated ennacthulhepton E100#{7}(#^7)>#{7}(#^7)>#{7}(#^7)100 $$f_{\varphi(5,6,\varphi(5,6,\varphi(5,6,0)))}(100)$$ tetrastaculated ennacthulhepton E100#{7}(#^8)4 $$f_{\varphi(5,7,0)[4]}(100)$$ pentastaculated ennacthulhepton E100#{7}(#^8)5 $$f_{\varphi(5,7,0)[5]}(100)$$ hexastaculated ennacthulhepton E100#{7}(#^8)6 $$f_{\varphi(5,7,0)[6]}(100)$$ heptastaculated ennacthulhepton E100#{7}(#^8)7 $$f_{\varphi(5,7,0)[7]}(100)$$ ogdastaculated ennacthulhepton E100#{7}(#^8)8 $$f_{\varphi(5,7,0)[8]}(100)$$ ennastaculated ennacthulhepton E100#{7}(#^8)9 $$f_{\varphi(5,7,0)[9]}(100)$$ dekastaculated ennacthulhepton E100#{7}(#^8)10 $$f_{\varphi(5,7,0)[10]}(100)$$ ennacthul-ogdon E100#{7}(#^8)100 $$f_{\varphi(5,7,0)}(100)$$ ennacthuliter-ogdon E100#{7}(#^8)>#100 $$f_{\varphi(5,7,\omega)}(100)$$ godgahlah-turreted-ennacthul-ogdon E100#{7}(#^8)>#^#100 $$f_{\varphi(5,7,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthul-ogdon E100#{7}(#^8)>#^^#100 $$f_{\varphi(5,7,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthul-ogdon E100#{7}(#^8)>#^^^#100 $$f_{\varphi(5,7,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthul-ogdon E100#{7}(#^8)>#^^^^#100 $$f_{\varphi(5,7,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthul-ogdon E100#{7}(#^8)>#{5}#100 $$f_{\varphi(5,7,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthul-ogdon E100#{7}(#^8)>#{6}#100 $$f_{\varphi(5,7,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}#100 $$f_{\varphi(5,7,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}##100 $$f_{\varphi(5,7,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}###100 $$f_{\varphi(5,7,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}####100 $$f_{\varphi(5,7,\varphi(5,3,0))}(100)$$ ennacthulpeton-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}(#^5)100 $$f_{\varphi(5,7,\varphi(5,4,0))}(100)$$ ennacthulhexon-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}(#^6)100 $$f_{\varphi(5,7,\varphi(5,5,0))}(100)$$ ennacthulhepton-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}(#^7)100 $$f_{\varphi(5,7,\varphi(5,6,0))}(100)$$ dustaculated ennacthul-ogdon, ennacthul-ogdon-turreted-ennacthul-ogdon E100#{7}(#^8)>#{7}(#^8)100 $$f_{\varphi(5,7,\varphi(5,7,0))}(100)$$ tristaculated ennacthul-ogdon E100#{7}(#^8)>#{7}(#^8)>#{7}(#^8)100 $$f_{\varphi(5,7,\varphi(5,7,\varphi(5,7,0)))}(100)$$ tetrastaculated ennacthul-ogdon E100#{7}(#^9)4 $$f_{\varphi(5,8,0)[4]}(100)$$ pentastaculated ennacthul-ogdon E100#{7}(#^9)5 $$f_{\varphi(5,8,0)[5]}(100)$$ hexastaculated ennacthul-ogdon E100#{7}(#^9)6 $$f_{\varphi(5,8,0)[6]}(100)$$ heptastaculated ennacthul-ogdon E100#{7}(#^9)7 $$f_{\varphi(5,8,0)[7]}(100)$$ ogdastaculated ennacthul-ogdon E100#{7}(#^9)8 $$f_{\varphi(5,8,0)[8]}(100)$$ ennastaculated ennacthul-ogdon E100#{7}(#^9)9 $$f_{\varphi(5,8,0)[9]}(100)$$ dekastaculated ennacthul-ogdon E100#{7}(#^9)10 $$f_{\varphi(5,8,0)[10]}(100)$$ ennacthulennon E100#{7}(#^9)100 $$f_{\varphi(5,8,0)}(100)$$ ennacthuliter-ennon E100#{7}(#^9)>#100 $$f_{\varphi(5,8,\omega)}(100)$$ godgahlah-turreted-ennacthulennon E100#{7}(#^9)>#^#100 $$f_{\varphi(5,8,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthulennon E100#{7}(#^9)>#^^#100 $$f_{\varphi(5,8,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthulennon E100#{7}(#^9)>#^^^#100 $$f_{\varphi(5,8,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthulennon E100#{7}(#^9)>#^^^^#100 $$f_{\varphi(5,8,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthulennon E100#{7}(#^9)>#{5}#100 $$f_{\varphi(5,8,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthulennon E100#{7}(#^9)>#{6}#100 $$f_{\varphi(5,8,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthulennon E100#{7}(#^9)>#{7}#100 $$f_{\varphi(5,8,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthulennon E100#{7}(#^9)>#{7}##100 $$f_{\varphi(5,8,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthulennon E100#{7}(#^9)>#{7}###100 $$f_{\varphi(5,8,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthulennon E100#{7}(#^9)>#{7}####100 $$f_{\varphi(5,8,\varphi(5,3,0))}(100)$$ ennacthulpeton-turreted-ennacthulennon E100#{7}(#^9)>#{7}(#^5)100 $$f_{\varphi(5,8,\varphi(5,4,0))}(100)$$ ennacthulhexon-turreted-ennacthulennon E100#{7}(#^9)>#{7}(#^6)100 $$f_{\varphi(5,8,\varphi(5,5,0))}(100)$$ ennacthulhepton-turreted-ennacthulennon E100#{7}(#^9)>#{7}(#^7)100 $$f_{\varphi(5,8,\varphi(5,6,0))}(100)$$ ennacthul-ogdon-turreted-ennacthulennon E100#{7}(#^9)>#{7}(#^8)100 $$f_{\varphi(5,8,\varphi(5,7,0))}(100)$$ dustaculated ennacthulennon, ennacthulennon-turreted-ennacthulennon E100#{7}(#^9)>#{7}(#^9)100 $$f_{\varphi(5,8,\varphi(5,8,0))}(100)$$ tristaculated ennacthulennon E100#{7}(#^9)>#{7}(#^9)>#{7}(#^9)100 $$f_{\varphi(5,8,\varphi(5,8,\varphi(5,8,0)))}(100)$$ tetrastaculated ennacthulennon E100#{7}(#^10)4 $$f_{\varphi(5,9,0)[4]}(100)$$ pentastaculated ennacthulennon E100#{7}(#^10)5 $$f_{\varphi(5,9,0)[5]}(100)$$ hexastaculated ennacthulennon E100#{7}(#^10)6 $$f_{\varphi(5,9,0)[6]}(100)$$ heptastaculated ennacthulennon E100#{7}(#^10)7 $$f_{\varphi(5,9,0)[7]}(100)$$ ogdastaculated ennacthulennon E100#{7}(#^10)8 $$f_{\varphi(5,9,0)[8]}(100)$$ ennastaculated ennacthulennon E100#{7}(#^10)9 $$f_{\varphi(5,9,0)[9]}(100)$$ dekastaculated ennacthulennon E100#{7}(#^10)10 $$f_{\varphi(5,9,0)[10]}(100)$$ ennacthuldekon E100#{7}(#^10)100 $$f_{\varphi(5,9,0)}(100)$$ ennacthuliterdekon E100#{7}(#^10)>#100 $$f_{\varphi(5,9,\omega)}(100)$$ godgahlah-turreted-ennacthuldekon E100#{7}(#^10)>#^#100 $$f_{\varphi(5,9,\omega^\omega)}(100)$$ tethrathoth-turreted-ennacthuldekon E100#{7}(#^10)>#^^#100 $$f_{\varphi(5,9,\varepsilon_0)}(100)$$ pentacthulhum-turreted-ennacthuldekon E100#{7}(#^10)>#^^^#100 $$f_{\varphi(5,9,\Gamma_0)}(100)$$ hexacthulhum-turreted-ennacthuldekon E100#{7}(#^10)>#^^^^#100 $$f_{\varphi(5,9,\varphi(2,0,0))}(100)$$ heptacthulhum-turreted-ennacthuldekon E100#{7}(#^10)>#{5}#100 $$f_{\varphi(5,9,\varphi(3,0,0))}(100)$$ ogdacthulhum-turreted-ennacthuldekon E100#{7}(#^10)>#{6}#100 $$f_{\varphi(5,9,\varphi(4,0,0))}(100)$$ ennacthulhum-turreted-ennacthuldekon E100#{7}(#^10)>#{7}#100 $$f_{\varphi(5,9,\varphi(5,0,0))}(100)$$ ennacthulcross-turreted-ennacthuldekon E100#{7}(#^10)>#{7}##100 $$f_{\varphi(5,9,\varphi(5,1,0))}(100)$$ ennacthulcubor-turreted-ennacthuldekon E100#{7}(#^10)>#{7}###100 $$f_{\varphi(5,9,\varphi(5,2,0))}(100)$$ ennacthulteron-turreted-ennacthuldekon E100#{7}(#^10)>#{7}####100 $$f_{\varphi(5,9,\varphi(5,3,0))}(100)$$ ennacthulpeton-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^5)100 $$f_{\varphi(5,9,\varphi(5,4,0))}(100)$$ ennacthulhexon-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^6)100 $$f_{\varphi(5,9,\varphi(5,5,0))}(100)$$ ennacthulhepton-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^7)100 $$f_{\varphi(5,9,\varphi(5,6,0))}(100)$$ ennacthul-ogdon-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^8)100 $$f_{\varphi(5,9,\varphi(5,7,0))}(100)$$ ennacthulennon-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^9)100 $$f_{\varphi(5,9,\varphi(5,8,0))}(100)$$ dustaculated ennacthuldekon, ennacthuldekon-turreted-ennacthuldekon E100#{7}(#^10)>#{7}(#^10)100 $$f_{\varphi(5,9,\varphi(5,9,0))}(100)$$ tristaculated ennacthuldekon E100#{7}(#^10)>#{7}(#^10)>#{7}(#^10)100 $$f_{\varphi(5,9,\varphi(5,9,\varphi(5,9,0)))}(100)$$ tetrastaculated ennacthuldekon E100#{7}(#^11)4 $$f_{\varphi(5,10,0)[4]}(100)$$ pentastaculated ennacthuldekon E100#{7}(#^11)5 $$f_{\varphi(5,10,0)[5]}(100)$$ hexastaculated ennacthuldekon E100#{7}(#^11)6 $$f_{\varphi(5,10,0)[6]}(100)$$ heptastaculated ennacthuldekon E100#{7}(#^11)7 $$f_{\varphi(5,10,0)[7]}(100)$$ ogdastaculated ennacthuldekon E100#{7}(#^11)8 $$f_{\varphi(5,10,0)[8]}(100)$$ ennastaculated ennacthuldekon E100#{7}(#^11)9 $$f_{\varphi(5,10,0)[9]}(100)$$ dekastaculated ennacthuldekon E100#{7}(#^11)10 $$f_{\varphi(5,10,0)[10]}(100)$$ ennacthulhendekon E100(#{7}#^11)100 $$f_{\varphi(5,10,0)}(100)$$ ennacthuldodekon E100(#{7}#^12)100 $$f_{\varphi(5,11,0)}(100)$$ ennacthultredekon E100(#{7}#^13)100 $$f_{\varphi(5,12,0)}(100)$$ ennacthulterdekon E100(#{7}#^14)100 $$f_{\varphi(5,13,0)}(100)$$ ennacthulpedekon E100(#{7}#^15)100 $$f_{\varphi(5,14,0)}(100)$$ ennacthul-exdekon E100(#{7}#^16)100 $$f_{\varphi(5,15,0)}(100)$$ ennacthul-epdekon E100(#{7}#^17)100 $$f_{\varphi(5,16,0)}(100)$$ ennacthul-ogdekon E100(#{7}#^18)100 $$f_{\varphi(5,17,0)}(100)$$ ennacthul-enndekon E100(#{7}#^19)100 $$f_{\varphi(5,18,0)}(100)$$ ennacthul-icoson E100(#{7}#^20)100 $$f_{\varphi(5,19,0)}(100)$$ ennacthul-trianton E100(#{7}#^30)100 $$f_{\varphi(5,29,0)}(100)$$ ennacthul-saranton E100(#{7}#^40)100 $$f_{\varphi(5,39,0)}(100)$$ ennacthul-peninton E100(#{7}#^50)100 $$f_{\varphi(5,49,0)}(100)$$ ennacthul-exinton E100(#{7}#^60)100 $$f_{\varphi(5,59,0)}(100)$$ ennacthul-ebdominton E100(#{7}#^70)100 $$f_{\varphi(5,69,0)}(100)$$ ennacthul-ogdonton E100(#{7}#^80)100 $$f_{\varphi(5,79,0)}(100)$$ ennacthul-eneninton E100(#{7}#^90)100 $$f_{\varphi(5,89,0)}(100)$$ ennacthul-enneneninton E100(#{7}#^99)100 $$f_{\varphi(5,98,0)}(100)$$ ennacthultope, ennacthulhecton E100#{7}#^#100 $$f_{\varphi(5,99,0)}(100)$$ grand ennacthulhecton E100(#{7}#^100)100#2 $$f^2_{\varphi(5,99,0)}(100)$$ grand ennacthultope E100#{7}#^#100#2 $$f^2_{\varphi(5,\omega,0)}(100)$$ ennacthul-lattitope E100#{7}#^##100 $$f_{\varphi(5,\omega^2,0)}(100)$$ ennacthul-cubitope E100#{7}#^###100 $$f_{\varphi(5,\omega^3,0)}(100)$$ ennacthul-quarticutope E100#{7}#^####100 $$f_{\varphi(5,\omega^4,0)}(100)$$ ennacthul-quinticuitope E100#{7}(#^#^5)100 $$f_{\varphi(5,\omega^5,0)}(100)$$ ennacthul-sexticuitope E100#{7}(#^#^6)100 $$f_{\varphi(5,\omega^6,0)}(100)$$ ennacthul-septicuitope E100#{7}(#^#^7)100 $$f_{\varphi(5,\omega^7,0)}(100)$$ ennacthul-octicuitope E100#{7}(#^#^8)100 $$f_{\varphi(5,\omega^8,0)}(100)$$ ennacthul-nonicuitope E100#{7}(#^#^9)100 $$f_{\varphi(5,\omega^9,0)}(100)$$ ennacthul-decicuitope E100#{7}(#^#^10)100 $$f_{\varphi(5,\omega^{10},0)}(100)$$ ennacthulto-godgathor E100#{7}(#^#^#)100 $$f_{\varphi(5,\omega^\omega,0)}(100)$$ ennacthulto-godtothol E100#{7}(#^#^#^#)100 $$f_{\varphi(5,\omega^{\omega^\omega},0)}(100)$$ ennacthulto-tethrathoth E100#{7}#^^#100 $$f_{\varphi(5,\varepsilon_0,0)}(100)$$ ennacthulto-pentacthulhum E100#{7}#^^^#100 $$f_{\varphi(5,\Gamma_0,0)}(100)$$ ennacthulto-hexacthulhum E100#{7}#^^^^#100 $$f_{\varphi(5,\varphi(2,0,0),0)}(100)$$ ennacthulto-heptacthulhum E100#{7}#{5}#100 $$f_{\varphi(5,\varphi(3,0,0),0)}(100)$$ ennacthulto-ogdacthulhum E100#{7}#{6}#100 $$f_{\varphi(5,\varphi(4,0,0),0)}(100)$$ ennacthularxitri, ennacthulto-ennacthulhum E100#{7}#{7}#100 $$f_{\varphi(5,\varphi(5,0,0),0)}(100)$$ ennacthularxitet E100#{8}#4 $$f_{\varphi(5,\varphi(5,\varphi(5,0,0),0),0)}(100)$$ ennacthularxipent E100#{8}#5 $$f_{\varphi(6,0,0)[5]}(100)$$ ennacthularxihex E100#{8}#6 $$f_{\varphi(6,0,0)[6]}(100)$$ ennacthularxihept E100#{8}#7 $$f_{\varphi(6,0,0)[7]}(100)$$ ennacthularxi-ogd E100#{8}#8 $$f_{\varphi(6,0,0)[8]}(100)$$ ennacthularxi-enn E100#{8}#9 $$f_{\varphi(6,0,0)[9]}(100)$$ ennacthularxideck E100#{8}#10 $$f_{\varphi(6,0,0)[10]}(100)$$ ennacthularxicose E100#{8}#20 $$f_{\varphi(6,0,0)[20]}(100)$$ ennacthularxitriane E100#{8}#30 $$f_{\varphi(6,0,0)[30]}(100)$$ ennacthularxisarane E100#{8}#40 $$f_{\varphi(6,0,0)[40]}(100)$$ ennacthularxipenine, ennacthularxigole E100#{8}#50 $$f_{\varphi(6,0,0)[50]}(100)$$ ennacthularxi-exine E100#{8}#60 $$f_{\varphi(6,0,0)[60]}(100)$$ ennacthularxi-ebdomine E100#{8}#70 $$f_{\varphi(6,0,0)[70]}(100)$$ ennacthularxi-ogdone E100#{8}#80 $$f_{\varphi(6,0,0)[80]}(100)$$ ennacthularxi-enenine E100#{8}#90 $$f_{\varphi(6,0,0)[90]}(100)$$ ennacthularxihect E100#{8}#100 $$f_{\varphi(6,0,0)}(100)$$ ennacthularxigigas E100#{8}#500 $$f_{\varphi(6,0,0)}(500)$$ ennacthularxichill E100#{8}#1000 $$f_{\varphi(6,0,0)}(1000)$$ ennacthularximyr E100#{8}#10,000 $$f_{\varphi(6,0,0)}(10,000)$$ ennacthularxigong E100#{8}#100,000 $$f_{\varphi(6,0,0)}(100,000)$$ ennacthularxi-octad E100#{8}#100,000,000 $$f_{\varphi(6,0,0)}(10^8)$$ ennacthularxi-sedeniad E100#{8}#10,000,000,000,000,000 $$f_{\varphi(6,0,0)}(10^{16})$$ ennacthularxi-googol E100#{8}#(E100) $$f_{\varphi(6,0,0)}(10^{100})$$ ennacthularxi-grangol E100#{8}#(E100#100) $$f_{\varphi(6,0,0)}(f_3(100))$$ ennacthularxi-godgahlah E100#{8}#(E100#^#100) $$f_{\varphi(6,0,0)}(f_{\omega^\omega}(100))$$ ennacthularxi-tethrathoth E100#{8}#(E100#^^#100) $$f_{\varphi(6,0,0)}(f_{\varepsilon_0}(100))$$ ennacthularxi-pentacthulhum E100#{8}#(E100#^^^#100) $$f_{\varphi(6,0,0)}(f_{\Gamma_0}(100))$$ ennacthularxi-hexacthulhum E100#{8}#(E100#^^^^#100) $$f_{\varphi(6,0,0)}(f_{\varphi(2,0,0)}(100))$$ ennacthularxi-heptacthulhum E100#{8}#(E100#{5}#100) $$f_{\varphi(6,0,0)}(f_{\varphi(3,0,0)}(100))$$ ennacthularxi-ogdacthulhum E100#{8}#(E100#{6}#100) $$f_{\varphi(6,0,0)}(f_{\varphi(4,0,0)}(100))$$ ennacthularxi-ennacthulhum E100#{8}#(E100#{7}#100) $$f_{\varphi(6,0,0)}(f_{\varphi(5,0,0)}(100))$$ ennacthularxi-ennacthularxitri E100#{8}#(E100#{7}#{7}#100) $$f_{\varphi(6,0,0)}(f_{\varphi(5,\varphi(5,0,0),0)}(100))$$ ennacthularxi-ennacthularxitet E100#{8}#(E100#{8}4) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[4]}(100))$$ ennacthularxi-ennacthularxipent E100#{8}#(E100#{8}5) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[5]}(100))$$ ennacthularxi-ennacthularxihex E100#{8}#(E100#{8}6) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[6]}(100))$$ ennacthularxi-ennacthularxihept E100#{8}#(E100#{8}7) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[7]}(100))$$ ennacthularxi-ennacthularxi-ogd E100#{8}#(E100#{8}8) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[8]}(100))$$ ennacthularxi-ennacthularxi-enn E100#{8}#(E100#{8}9) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[9]}(100))$$ ennacthularxi-ennacthularxideck E100#{8}#(E100#{8}10) $$f_{\varphi(6,0,0)}(f_{\varphi(6,0,0)[10]}(100))$$ ennacthularxi-ennacthularxihect E100#{8}#(E100#{8}100) $$f^2_{\varphi(6,0,0)}(100)$$ ennacthularxi-ennacthularxi-ennacthularxihect E100#{8}#(E100#{8}(E100#{8}100)) $$f^3_{\varphi(6,0,0)}(100)$$ ennacthularxi-ennacthularxi-ennacthularxi-ennacthularxihect E100#{8}#(E100#{8}(E100#{8}(E100#{8}100))) $$f^4_{\varphi(6,0,0)}(100)$$ ennacthularxi-ennacthularxi-ennacthularxi-ennacthularxi-ennacthularxihect E100#{8}#(E100#{8}(E100#{8}(E100#{8}(E100#{8}100)))) $$f^5_{\varphi(6,0,0)}(100)$$