The duetriacontillion is equal to \(10^{3\times 10^{96}+3}\) or \(10^{3\text{ untrigintillion }3}\).[1] It is defined using Sbiis Saibian's generalization of Jonathan Bowers' -illion system.

SuperJedi224 coined tetero-yoctillion for this number, and is equal to H(1096) using H* function.[2]

Approximations

Notation Lower bound Upper bound
Arrow notation \(1000\uparrow(1+10\uparrow96)\)
Down-arrow notation \(1000\downarrow\downarrow33\) \(812\downarrow\downarrow34\)
Steinhaus-Moser Notation 54[3][3] 55[3][3]
Copy notation 2[2[97]] 3[3[97]]
H* function H(H(31))
Taro's multivariable Ackermann function A(3,A(3,319)) A(3,A(3,320))
Pound-Star Notation #*((1))*(0,0,1,7)*9 #*((1))*(1,7,1,1)*11
BEAF {1000,1+{10,96}}
Hyper-E notation E(3+3E96)
Bashicu matrix system (0)(1)[17] (0)(1)[18]
Hyperfactorial array notation (66!)! (67!)!
Fast-growing hierarchy \(f_2(f_2(313))\) \(f_2(f_2(314))\)
Hardy hierarchy \(H_{\omega^22}(313)\) \(H_{\omega^22}(314)\)
Slow-growing hierarchy \(g_{\omega^{\omega^{\omega9+6}3+3}}(10)\)

Sources

Numbers By SuperJedi224

Fibonacci Numbers

Pound-Star Notation

Based on the Faxul

Googovipleccix family

Graham Sequence Numbers

-Illion numbers

"-Illion" numbers by SuperJedi224

Community content is available under CC-BY-SA unless otherwise noted.