The dueicosillion is equal to \(10^{3\left(10^{66}\right)+3}\) or \(10^{3\text{ unvigintillion }3}\).[1] The term was coined by Aarex Tiaokhiao.
Approximations
Notation | Lower bound | Upper bound |
---|---|---|
Arrow notation | \(1000\uparrow(1+10\uparrow66)\) | |
Down-arrow notation | \(1000\downarrow\downarrow23\) | \(742\downarrow\downarrow24\) |
Steinhaus-Moser Notation | 40[3][3] | 41[3][3] |
Copy notation | 2[2[67]] | 3[3[67]] |
H* function | H(H(21)) | |
Taro's multivariable Ackermann function | A(3,A(3,219)) | A(3,A(3,220)) |
Pound-Star Notation | #*((1))*(0,5,0,4,1)*5 | #*((1))*(1,5,0,4,1)*5 |
BEAF | {1000,1+{10,66}} | |
Hyper-E notation | E(3+3E66) | |
Bashicu matrix system | (0)(1)[14] | (0)(1)[15] |
Hyperfactorial array notation | (50!)! | (51!)! |
Fast-growing hierarchy | \(f_2(f_2(214))\) | \(f_2(f_2(215))\) |
Hardy hierarchy | \(H_{\omega^22}(214)\) | \(H_{\omega^22}(215)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^{\omega6+6}3+3}}(10)\) |
Sources
Community content is available under CC-BY-SA unless otherwise noted.