Not to be confused with dohectillion.

Duehectillion is equal to \(10^{3\cdot10^{306} + 3}\).[1] It is defined using Sbiis Saibian's generalization of Jonathan Bowers' -illion system.

Approximations

Notation Lower bound Upper bound
Arrow notation \(1000\uparrow(1+10\uparrow306)\)
Down-arrow notation \(1000\downarrow\downarrow103\) \(281\downarrow\downarrow126\)
Steinhaus-Moser Notation 141[3][3] 142[3][3]
Copy notation 2[2[307]] 3[3[307]]
H* function H(H(101))
Taro's multivariable Ackermann function A(3,A(3,1016)) A(3,A(3,1017))
Pound-Star Notation #*((1))*((1))*9 #*((1))*((2))*9
BEAF {1000,1+{10,306}}
Hyper-E notation E(3+3E306)
Bashicu matrix system (0)(1)[31] (0)(1)[32]
Hyperfactorial array notation (168!)! (169!)!
Fast-growing hierarchy \(f_2(f_2(1009))\) \(f_2(f_2(1010))\)
Hardy hierarchy \(H_{\omega^22}(1009)\) \(H_{\omega^22}(1010)\)
Slow-growing hierarchy \(g_{\omega^{\omega^{\omega^23+6}3+3}}(10)\)

Sources

Community content is available under CC-BY-SA unless otherwise noted.