10,590 Pages

Dihexar is equal to $$Q_{1,1}(6)$$ in the Q-supersystem. The term was coined by Boboris02.

The number can be computed like this:

• $$t_{1}=6\uparrow\uparrow\uparrow\uparrow 6$$, aka Hexar.
• $$t_{2}=6\uparrow^{t_{1}-2} 6$$.
• $$t_{n}=6\uparrow^{t_{n-1}-2} 6$$.
• Dihexar is equal to $$t_6$$.

## Etymology

The name comes from the number "Hexar" and "di", meaning two.

## Approximations

Notation Approximation
Up-arrow notation $$6\uparrow^{6\uparrow^{6\uparrow^{6\uparrow^{6\uparrow^{6\uparrow^{4} 6} 6} 6} 6} 6} 6$$
Chained arrow notation $$6\rightarrow 6\rightarrow 6\rightarrow 2$$
Fast-growing hierarchy (using CNF's fundamental sequences) $$f_{\omega+1}(6)$$
Hardy hierarchy $$H_{\omega^{\omega+1}}(6)$$
BEAF $$\{6,6,\{6,6,\{6,6,\{6,6,\{6,6,\{6,6,4\}\}\}\}\}\}$$
Hyperfactorial array notation $$8!(8!(8!(8!(8!(8!3)))))$$
Notation Array Notation $$(6\{2,(6,\{2,(6,\{2,(6,\{2,(6,\{2,(6\{2,4\}6)\}6)\}6)\}6)\}6)\}6)$$

## Sources

Community content is available under CC-BY-SA unless otherwise noted.