10,964 Pages

Bigreat Kilodestrutrixul is equal to Bigreat Destrutrixul![200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200], using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on Latin prefix "bi-" and the number "Great Kilodestrutrixul".

Approximations

Notation Approximation
Bird's array notation $$\{200,3,201[1[1\neg200[1\neg200[1\neg202]200[1\neg202]200[1\neg202]200] \\ 200[1\neg202]200[1\neg202]200]200[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,3,201[1[1/200[1[1/200[1[1/201\sim2]200[1/201\sim2]200 \\ [1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2]200] \\ 2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}^2(200)$$ where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)\omega^{199}2}(200)$$ where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$