11,051 Pages

Bigreat Destrubixul is equal to 200![200([200(200)200(200)200(200)200])200(200)200(200)200], using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on Latin prefix "bi-" and the number "Great Destrubixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,200,200[1[1\neg200[1\neg202]200[1\neg202]200[1\neg202]200] \\ 200[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,200,200[1[1/200[1[1/201\sim2]200[1/201\sim2]200[1/201\sim2]200] \\ 2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}3}199+\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199)+199}}\times(\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199))+199}(200)$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}3}199+\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199)+199}}\times(\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199))\omega^{199}}(200)$$