11,329
pages

Bigreat Bigrand Destrutrixul is equal to (...(200![200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])![200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200]...)![200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200] (with Bigreat Grand Destrutrixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on Latin prefix "bi-" and the number "Great Bigrand Destrutrixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg200[1\neg200[1\neg202]200[1\neg202]200[1\neg202]200] \\ 200[1\neg202]200[1\neg202]200]200[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/200[1[1/200[1[1/201\sim2]200[1/201\sim2]200 \\ [1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2]200] \\ 2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+200}^2 \\ (f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}(200))$$

where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$

Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)\times(\omega^{200}2+\omega^{199})}(200)$$ where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$