11,329
pages

Bigrand Hugebixul is equal to (...((200![200(1)200(1)200])![200(1)200(1)200])![200(1)200(1)200]...)![200(1)200(1)200] (with Grand Hugebixul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

## Contents

### Etymology

The name of this number is based on prefix "bi-" and the number "Grand Hugebixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg3]200[1\neg3]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/2\sim2]200[1/2\sim2]200]2\}$$
BEAF $$\{200,4,202(\{X,\{X,199X,1,3\}+199X,1,2\})2\}$$[2]
Fast-growing hierarchy (with this system of fundamental sequences) $$f_{\Gamma_{\varphi(2,0,198)+199}+200}^2(f_{\Gamma_{\varphi(2,0,198)+199}+199}(200))$$
Hardy hierarchy (with this system of fundamental sequences) $$H_{\Gamma_{\varphi(2,0,198)+199}\omega^{200}2+\Gamma_{\varphi(2,0,198)+199}\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\theta(\Gamma_{\varphi(2,0,\Omega+199)+199}+200,\theta(\Gamma_{\varphi(2,0,\Omega+199)+199}+200,\vartheta(\Gamma_{\varphi(2,0,\Omega+199)+199}+199)))}(200)$$

### Sources

1. Lawrence Hollom's large number site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.