10,964 Pages

Bigrand Destruxul is equal to (...(((200![200(200)200])![200(200)200])![200(200)200]...)![200(200)200] (with Grand Destruxul parentheses), using Hyperfactorial array notation.The term was coined by Lawrence Hollom.[1]

Contents

Etymology

The name of this number is based on prefix "bi-" and the number "Grand Destruxul".

Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,\{200,2,201[1[1\neg202]200]2\} \\ ,201[1[1\neg202]200]2\},201[1[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,\{200,2,201[1[1/201\sim2]200]2\} \\ ,201[1[1/201\sim2]200]2\},201[1[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\theta(\Omega^{200},198)+200}^2(f_{\theta(\Omega^{200},198)+199}(200))$$
Hardy hierarchy $$H_{\theta(\Omega^{200},198)\omega^{200}2+\theta(\Omega^{200},198)\omega^{199}}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+200,\theta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+200,} \\ _{\vartheta(\Omega_2^{200}+\theta_1(\Omega_2^{200},198)+199)))}(200)$$